Flight plan optimization for multiple drones in construction sites

Authors

DOI:

https://doi.org/10.26439/interfases2023.n017.6230

Keywords:

dynamic programming, flight planner, surveillance drones, genetic alorithm

Abstract

The construction sector is searching for new technologies, such as drones, that prove helpful for the surveillance and supervision of construction sites, especially in pandemic situations. This research proposes designing flight planning models to optimize flight time and speed. The main objective is to develop a model that allows multiple drones to carry out supervision tasks in construction areas. In this regard, it presents a dynamic programming model and a metaheuristic based on genetic algorithms, both applied for optimizing flight plans with multiple drones. The development process involves planning the route that the drones will follow by formulating the problem with the corresponding parameters. The next step is to generate a model for the dynamic programming algorithm, which is then validated using a genetic algorithm. The proposals implemented in Python were tested in 14 scenarios, gradually increasing in complexity. The dynamic programming-based model significantly improves planning time in all scenarios, achieving an average difference of 281,34 seconds or 4 minutes and 47 seconds, 98,01 % better than the genetic algorithm. Additionally, there is a considerable improvement in segment speeds, as the results show. A paired test evaluated these advancements. The hypothesis is supported with a p-value of 0,0031 for time and 0,0071 for the gain obtained by the objective function in both cases. This confirms the superiority of the dynamic programming algorithm compared to the genetic algorithm.

Downloads

Download data is not yet available.

Author Biographies

  • Alvaro Sotelo Vila, Universidad de Lima, Peru

    Bachiller en Ingeniería de Sistemas por la Universidad de Lima. Tiene experiencia en consultoría durante una pasantía en IBM. Actualmente, trabaja en obtener su título profesional en la Carrera de Ingeniería de Sistemas. Sus áreas de interés son business intelligence, drones y electrónica.

  • Lourdes Ramírez Cerna, Universidad de Lima, Peru

    Magíster en Ciencia de la Computación por la Universidade Federal de Ouro Preto, Brasil. Graduada en Ciencias de la Computación por la Universidad Nacional de Trujillo. Actualmente, está terminando el doctorado en Ciencias e Ingeniería en la Universidad Nacional de Trujillo. Docente auxiliar en la Universidad de Lima en la Carrera de Ingeniería de Sistemas. Investigadora RENACYT. Sus áreas de interés son la visión computacional, machine learning, optimización combinatoria y logística.

References

Albeaino, G., & Gheisari, M. (2021). Trends, benefits, and barriers of unmanned aerial systems in the construction industry: A survey study in the United States. Journal of Information Technology in Construction, 26, 84-111. https://doi.org/10.36680/j.itcon.2021.006

Balfour Beatty. (2017, 12 de mayo). Flying into the future of bridge inspections. https://www.balfourbeatty.com/news/flying-into-the-future-of-bridge-inspections/

Bouman, P., Agatz, N., & Schmidt, M. (2018). Dynamic programming approaches for the traveling salesman problem with drone. Networks, 72(4), 528-542. https://doi.org/10.1002/net.21864

Criado, R. M., & Rodríguez Rubio, F. (2015). Autonomous path tracking control design for a comercial quadcopter. IFAC-PapersOnLine, 48(9), 73-78. https://doi.org/10.1016/j.ifacol.2015.08.062

Decreto Supremo 011-2019-TR [Ministerio de Trabajo y Promoción del Empleo]. Decreto Supremo que aprueba el Reglamento de Seguridad y Salud en el Trabajo para el Sector Construcción. 11 de julio del 2019. Diario oficial El Peruano. https://cdn.www.gob.pe/uploads/document/file/341232/decreto-supremo-n-011-2019-tr-1787274-4.pdf?v=1562856062

DJI. (2020). Mavic 2 Pro/Zoom. User Manual. DJI.

Doole, M., Ellerbroek, J., & Hoekstra, J. (2020). Estimation of traffic density from drone-based delivery in very low level urban airspace. Journal of Air Transport

Management, 88, 101862. https://doi.org/10.1016/j.jairtraman.2020.101862

Fan, J., & Saadeghvaziri, M. A. (2019). Applications of drones in infrastructures: Challenges and opportunities. World Academy of Science, Engineering and Technology International Journal of Mechanical and Mechatronics Engineering, 13(10), 649-655. https://doi.org/10.5281/zenodo.3566281

Fu, S.-Y., Han, L.-W., Tian, Y., & Yang, G.-S. (2012). Path planning for unmanned aerial vehicle based on genetic algorithm. En 2012 IEEE 11th International Conference on Cognitive Informatics and Cognitive Computing (pp. 140-144). IEEE. https://doi.org/10.1109/ICCI-CC.2012.6311139

Hrishikeshavan, V., & Chopra, I. (2017). Refined lightweight inertial navigation system for micro air vehicle applications. International Journal of Micro Air Vehicles, 9(2), 124-135. https://doi.org/10.1177/1756829316682534

Hromkovič, J. (2013). Algorithmics for Hard Problems: Introduction to Combinatorial Optimization, Randomization, Approximation, and Heuristics. Springer Science & Business Media.

Khan, S. I., Qadir, Z., Munawar, H. S., Nayak, S. R., Budati, A. K., Verma, K. D., & Prakash, D. (2021). UAVs path planning architecture for effective medical emergency response in future networks. Physical Communication, 47, 101337. https://doi.org/10.1016/j.phycom.2021.101337

Lee, D., & Cha, D. (2020). Path optimization of a single surveillance drone based on reinforcement learning. International Journal of Mechanical Engineering and Robotics Research, 9(12), 1541-1547. https://doi.org/10.18178/ijmerr.9.12.1541-1547

Li, Y., Liu, H., Zheng, X., Han, Y., & Li, L. (2019). A top-bottom clustering algorithm based on crowd trajectories for small group classification. IEEE Access, 7, 29679-29698. https://doi.org/10.1109/ACCESS.2019.2902310

Ministerio de Vivienda, Construcción y Saneamiento. (2020). Lineamientos de prevención y control frente a la propagación del COVID-19 en la ejecución de obras de construcción. https://cdn.www.gob.pe/uploads/document/file/671272/Lineamiento_de_Prevencion_y_Control_del_COVID-19_en_Obras_Construccion.pdf

Nguyen, M. A., Dang, G. T.-H., Hà, M. H., & Pham, M.-T. (2022). The min-cost parallel drone scheduling vehicle routing problem. European Journal of Operational Research, 299(3), 910-930. https://doi.org/10.1016/j.ejor.2021.07.008

Palomino, J., Hennings, J., & Echevarría, V. (2017). Análisis macroeconómico del sector construcción en el Perú. Quipukamayoc, 25(47), 95-101. https://doi.org/10.15381/quipu.v25i47.13807

Poikonen, S., Golden, B., & Wasil, E. A. (2019). A branch-and-bound approach to the traveling salesman problem with a drone. INFORMS Journal on Computing, 31(2), 335-346. https://doi.org/10.1287/ijoc.2018.0826

Sando. (2021, 2 de agosto). Sando logra la habilitación para operar drones en espacios aéreos controlados, zonas urbanas y vuelos nocturnos. Sando blog. https://www.sando.com/es/drones-sando-aesa-operar-zonas-urbanas-nocturnas/

Schermer, D., Moeini, M., & Wendt, O. (2020). The traveling salesman drone station location problem. En H. Le Thi, H. Le & T. Pham Dinh (Eds.), Optimization of

Complex Systems: Theory, Models, Algorithms and Applications. WCGO 2019 (pp. 1129-1138). Springer. https://doi.org/10.1007/978-3-030-21803-4_111

Wankmüller, C., Truden, C., Korzen, C., Hungerländer, P., Kolesnik, E., & Reiner, G. (2020). Optimal allocation of defibrillator drones in mountainous regions. OR Spectrum, 42(3), 785-814. https://doi.org/10.1007/s00291-020-00575-z

Yi, W., & Sutrisna, M. (2021). Drone scheduling for construction site surveillance. Computer-Aided Civil and Infrastructure Engineering, 36(1), 3-13. https://doi.org/10.1111/mice.12593

Published

2023-07-31

Issue

Section

Research papers

How to Cite

Flight plan optimization for multiple drones in construction sites. (2023). Interfases, 17(017), 96-122. https://doi.org/10.26439/interfases2023.n017.6230

Most read articles by the same author(s)