A review of system implementations for diabetes trend identification
DOI:
https://doi.org/10.26439/interfases2022.n016.5957Keywords:
diabetes mellitus, trend identification, preventive software, construction methods, logistic regression, artificial neural networksAbstract
Diabetes mellitus is a chronic disease that appears when the pancreas does not secrete enough insulin or the body does not properly use the insulin it produces. Insulin is a hormone that regulates glucose concentration in the blood: one of the most common effects of uncontrolled diabetes is hyperglycemia, which seriously damages many organs and body systems over time. In this sense, the development of predictive software, the diagnosis, and subsequent treatment of diabetes, especially of type 1 and 2, which are the most frequent, deserve attention. This paper presents a systematic review of the literature to determine the methods and problems in constructing diabetes-oriented trend identification systems. The results show 16 construction methods used in these systems, the most efficient being logistic regression and artificial neural networks.
Downloads
References
Ahmed, U., Issa, G. F., Khan, M. A., Aftab, S., Khan, M. F., & Said, R. A. T. (2022). Prediction of diabetes empowered with fused machine learning. IEEE Access, 10, 8529-8538. https://doi.org/10.1109/ACCESS.2022.3142097
Asgari, S., Khalili, D., & Hosseinpanah, F. (2021). Prediction models for type 2 diabetes risk in the general population: A systematic review of observational studies. International Journal of Endocrinology and Metabolism, 19(3). https://doi.org/10.5812/ijem.109206.Systematic
Barbaresko, J., Neuenschwander, M., Schwingshackl, L., & Schlesinger, S. (2019). Dietary factors and diabetes related health outcomes in patients with type 2 diabetes: Protocol for a systematic review and meta-analysis of prospective observational studies. BMJ Open, 9(7). https://doi.org/10.1136/bmjopen-2018-027298
Castelyn, G., Laranjo, L., Schreier, G., & Gallego, B. (2021a). Predictive performance and impact of algorithms in remote monitoring of chronic conditions: A systematic review and meta-analysis. International Journal of Medical Informatics, 156, 104620. https://doi.org/10.1016/j.ijmedinf.2021.104620
Castelyn, G., Laranjo, L., Schreier, G., & Gallego, B. (2021b). Predictive performance and impact of algorithms in remote monitoring of chronic conditions: A systematic review and meta-analysis. International Journal of Medical
Informatics, 156, 104620. https://doi.org/10.1016/j.ijmedinf.2021.104620
Chaki, J., Thillai Ganesh, S., Cidham, S. K., & Ananda Theertan, S. (2020). Machine learning and artificial intelligence based diabetes mellitus detection and self-management: A systematic review. Journal of King Saud University - Computer and Information Sciences, 34, 3204-3225. https://doi.org/10.1016/j.jksuci.2020.06.013
Cicek, M., Buckley, J., Pearson-Stuttard, J., & Gregg, E. W. (2021). Characterizing multimorbidity from type 2 diabetes: Insights from clustering approaches. Endocrinology and Metabolism Clinics of North America, 50(3), 531-558. https://doi.org/10.1016/j.ecl.2021.05.012
De Silva, K., Jönsson, D., & Demmer, R. T. (2020). A combined strategy of feature selection and machine learning to identify predictors of prediabetes. Journal of the American Medical Informatics Association, 27(3), 396-406. https://doi.org/10.1093/jamia/ocz204
De Silva, K., Lee, W. K., Forbes, A., Demmer, R. T., Barton, C., & Enticott, J. (2020). Use and performance of machine learning models for type 2 diabetes prediction in community settings: A systematic review and meta-analysis. International Journal of Medical Informatics, 143, 104268. https://doi.org/10.1016/j.ijmedinf.2020.104268
De Silva, K., Lim, S., Mousa, A., Teede, H., Forbes, A., Demmer, R. T., Jönsson, D., & Enticott, J. (2021). Nutritional markers of undiagnosed type 2 diabetes in adults: Findings of a machine learning analysis with external validation and benchmarking. PLOS ONE, 16(5), e0250832. https://doi.org/10.1371/journal.pone.0250832
Diouri, O., Cigler, M., Vettoretti, M., Mader, J. K., Choudhary, P., & Renard, E. (2021). Hypoglycaemia detection and prediction techniques: A systematic review on the latest developments. Diabetes/Metabolism Research and Reviews, 37(7), e3449. https://doi.org/10.1002/dmrr.3449
Domingo-Lopez, D. A., Lattanzi, G., H. J. Schreiber, L., Wallace, E. J., Wylie, R., O’Sullivan, J., Dolan, E. B., & Duffy, G. P. (2022). Medical devices, smart drug delivery, wearables and technology for the treatment of diabetes mellitus. Advanced Drug Delivery Reviews, 185, 114280. https://doi.org/10.1016/j.addr.2022.114280
Eberle, C., Loehnert, M., & Stichling, S. (2021). Clinical effectiveness of different technologies for diabetes in pregnancy: Systematic literature review. Journal of Medical Internet Research, 23(4). https://doi.org/10.2196/24982
Farmanfarma, K. H. K., Zareban, I., & Adineh, H. A. (2020). Prevalence of type 2 diabetes in Middle-East: Systematic review & meta-analysis. Primary Care Diabetes, 14(4), 297-304. https://doi.org/10.1016/j.pcd.2020.01.003
Felizardo, V., Garcia, N. M., Pombo, N., & Megdiche, I. (2021). Data-based algorithms and models using diabetics real data for blood glucose and hypoglycaemia prediction – A systematic literature review. Artificial Intelligence in Medicine, 118, 102120. https://doi.org/10.1016/j.artmed.2021.102120
Fitriyani, N. L., Syafrudin, M., Alfian, G., & Rhee, J. (2019). Development of disease prediction model based on ensemble learning approach for diabetes and hypertension. IEEE Access, 7, 144777-144789. https://doi.org/10.1109/ACCESS.2019.2945129
Fregoso-Aparicio, L. F., Noguez, J., Montesinos, L., & García, J. A. G. (2021). Machine learning and deep learning predictive models for type 2 diabetes: A systematic review. Diabetology & Metabolic Syndrome, 13. https://doi.org/10.1186/s13098-021-00767-9
Galbete, A., Tamayo, I., Librero, J., Enguita-Germán, M., Cambra, K., & Ibáñez-Beroiz, B. (2022). Cardiovascular risk in patients with type 2 diabetes: A systematic review of prediction models. Diabetes Research and Clinical Practice, 184. https://doi.org/10.1016/j.diabres.2021.109089
Gandevani, S. B., Amiri, M., Yarandi, R. B., & Tehrani, F. R. (2019). The impact of diagnostic criteria for gestational diabetes on its prevalence: A systematic review and meta-analysis. Diabetology & Metabolic Syndrome, 11, 1-18. https://doi.org/10.1186/s13098-019-0406-1
Gautier, T., Ziegler, L. B., Gerber, M. S., Campos-Náñez, E., & Patek, S. D. (2021). Artificial intelligence and diabetes technology: A review. Metabolism: Clinical and Experimental, 124. https://doi.org/10.1016/j.metabol.2021.154872
Haghi Kashani, M., Madanipour, M., Nikravan, M., Asghari, P., & Mahdipour, E. (2021). A systematic review of IoT in healthcare: Applications, techniques, and trends. Journal of Network and Computer Applications, 192, 103164. https://doi.org/10.1016/j.jnca.2021.103164
Hong, N., Park, H., & Rhee, Y. (2020). Machine learning applications in endocrinology and metabolism research: An overview. Endocrinology and Metabolism, 35(1), 71-84. https://doi.org/10.3803/EnM.2020.35.1.71
Jaiswal, V., Negi, A., & Pal, T. (2021). A review on current advances in machine learning based diabetes prediction. Primary Care Diabetes, 15(3), 435-443. https://doi.org/10.1016/j.pcd.2021.02.005
Kattini, R., Hummelen, R., & Kelly, L. (2020). Early gestational diabetes mellitus screening with glycated hemoglobin: A systematic review. Journal of Obstetrics and Gynaecology Canada, 42(11), 1379-1384. https://doi.org/10.1016/j.jogc.2019.12.015
Khan, F. A., Zeb, K., Al-Rakhami, M., Derhab, A., & Bukhari, S. A. C. (2021). Detection and prediction of diabetes using data mining: A comprehensive review. IEEE Access, 9, 43711-43735. https://doi.org/10.1109/ACCESS.2021.3059343
Kodama, S., Fujihara, K., Horikawa, C., Kitazawa, M., Iwanaga, M., Kato, K., Watanabe, K., Nakagawa, Y., Matsuzaka, T., Shimano, H., & Sone, H. (2022). Predictive ability of current machine learning algorithms for type 2 diabetes mellitus: A meta-analysis. Journal of Diabetes Investigation, 13(5), 900-908. https://doi.org/10.1111/jdi.13736
Kvitkina, T., Narres, M., Claessen, H., Metzendorf, M. I., Richter, B., & Icks, A. (2020). Incidence of stroke in the diabetic compared with the non-diabetic population: A systematic review protocol. Diabetes/Metabolism Research and Reviews, 36(6). https://doi.org/10.1002/dmrr.3311
Li, K., Daniels, J., Liu, C., Herrero, P., & Georgiou, P. (2020). Convolutional recurrent neural networks for glucose prediction. IEEE Journal of Biomedical and Health Informatics, 24(2), 603-613. https://doi.org/10.1109/JBHI.2019.2908488
Madhava, P. S., & Verma, S. (2019). A systematic literature review for early detection of type ii diabetes. En 2019 5th International Conference on Advanced Computing and Communication Systems (ICACCS) (pp. 220-224). https://doi.org/10.1109/ICACCS.2019.8728377
Magliano, D. J., Islam, R. M., Barr, E. L. M., Gregg, E. W., Pavkov, M. E., Harding, J. L., Tabesh, M., Koye, D. N., & Shaw, J. E. (2019). Trends in incidence of total or type 2 diabetes: Systematic review. BMJ, 366. https://doi.org/10.1136/bmj.l5003
Nuankaew, P., Chaising, S., & Temdee, P. (2021). Average weighted objective distance-based method for type 2 diabetes prediction. IEEE Access, 9, 137015-137028. https://doi.org/10.1109/ACCESS.2021.3117269
Pease, A., Lo, C., Earnest, A., Kiriakova, V., Liew, D., & Zoungas, S. (2019). The efficacy of technology in type 1 diabetes: A systematic review, network meta-analysis, and narrative synthesis. Diabetes Technology & Therapeutics, 22(5), 411-421. https://doi.org/10.1089/dia.2019.0417
Peer, N., Balakrishna, Y., & Durao, S. (2020). Screening for type 2 diabetes mellitus. Cochrane Database of Systematic Reviews, 5. https://doi.org/10.1002/14651858.CD005266.pub2
Ray, A., & Chaudhuri, A. K. (2021). Smart healthcare disease diagnosis and patient management: Innovation, improvement and skill development. Machine Learning with Applications, 3, 100011. https://doi.org/10.1016/j.mlwa.2020.100011
Safaei, M., Sundararajan, E. A., Driss, M., Boulila, W., & Shapi’i, A. (2021). A systematic literature review on obesity: Understanding the causes & consequences of obesity and reviewing various machine learning approaches used to predict obesity. Computers in Biology and Medicine, 136, 104754. https://doi.org/10.1016/j.compbiomed.2021.104754
Santos, D. S., Regina, C., Batistelli, S., & Marilac, M. (2022). The effectiveness of the use of telehealth programs in the care of individuals with hypertension and, or diabetes mellitus: Systematic review and meta-analysis. Diabetology & Metabolic Syndrome, 14, 76. https://doi.org/10.1186/s13098-022-00846-5
Schwartz, J. L., Tseng, E., Maruthur, N. M., & Rouhizadeh, M. (2022). Identification of prediabetes discussions in unstructured clinical documentation: Validation of a natural language processing algorithm. Journal of Medical Internet Research, 10(2). https://doi.org/10.2196/29803
Shahid, A. H., & Singh, M. P. (2019). Computational intelligence techniques for medical diagnosis and prognosis: Problems and current developments. Biocybernetics and Biomedical Engineering, 39(3), 638-672. https://doi.org/10.1016/j.bbe.2019.05.010
Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104, 333-339. https://doi.org/10.1016/j.jbusres.2019.07.039
Tuppad, A., & Patil, S. D. (2022). Machine learning for diabetes clinical decision support: A review. Advances in Computational Intelligence, 2(2), 1-24. https://doi.org/10.1007/s43674-022-00034-y
Vounzoulaki, E., Khunti, K., Abner, S. C., Tan, B. K., Davies, M. J., & Gillies, C. L. (2020). Progression to type 2 diabetes in women with a known history of gestational diabetes: Systematic review and meta-analysis. BMJ, 369, m1361. https://doi.org/10.1136/bmj.m1361
Wang, Q., Cao, W., Guo, J., Ren, J., Cheng, Y., & Davis, D. N. (2019). DMP_MI: An effective diabetes mellitus classification algorithm on imbalanced data with missing values. IEEE Access, 7, 102232-102238. https://doi.org/10.1109/ACCESS.2019.2929866
Wang, Y., Liu, D., Li, X., Liu, Y., & Wu, Y. (2021). Antidepressants use and the risk of type 2 diabetes mellitus: A systematic review and meta-analysis. Journal of Affective Disorders, 287(45), 41-53. https://doi.org/10.1016/j.jad.2021.03.023
Woldaregay, A. Z., Årsand, E., Walderhaug, S., Albers, D., Mamykina, L., Botsis, T., & Hartvigsen, G. (2019). Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes. Artificial Intelligence in Medicine, 98, 109-134. https://doi.org/10.1016/j.artmed.2019.07.007
Xie, J., & Wang, Q. (2020). Benchmarking machine learning algorithms on blood glucose prediction for type i diabetes in comparison with classical time-series models. IEEE Transactions on Biomedical Engineering, 67(11), 101-3124. https://doi.org/10.1109/TBME.2020.2975959
Zaitcev, A., Eissa, M. R., Hui, Z., Good, T., Elliott, J., & Benaissa, M. (2020). A deep neural network application for improved prediction of HbA 1c in type 1 diabetes. IEEE Journal of Biomedical and Health Informatics, 24(10), 2932-2941. https://doi.org/10.1109/JBHI.2020.2967546
Zhang, H., Shao, J., Chen, D., Zou, P., Ciu, N., Tang, L., Wang, D., & Ye, Z. (2020). Reporting and methods in developing prognostic prediction models for metabolic syndrome: A systematic review and critical appraisal. Diabetes, Metabolic Syndrome and Obesity, 13, 4981-4992.
Zhang, Z., Yang, L., Han, W., Wu, Y., Zhang, L., Gao, C., Jiang, K., Liu, Y., & Wu, H. (2022). Machine learning prediction models for gestational diabetes mellitus: Meta-analysis. Journal of Medical Internet Research, 24(3). https://doi.org/10.2196/26634
Zheng, M., Bernardo, C. O., Stocks, N., & Gonzalez-Chica, D. (2022). Diabetes mellitus diagnosis and screening in Australian general practice: A national study. Journal of Diabetes Research. DOI: 10.1155/2022/156640
Zhu, T., Li, K., Herrero, P., & Georgiou, P. (2021). Deep learning for diabetes: A systematic review. IEEE Journal of Biomedical and Health Informatics, 25(7), 2744-2757. https://doi.org/10.1109/JBHI.2020.3040225
Zimmerman, J., Soler, R. E., Lavinder, J., Murphy, S., Atkins, C., Hulbert, L., Lusk, R., & Ng, B. P. (2021). Iterative guided machine learning-assisted systematic literature reviews: A diabetes case study. Systematic Reviews, 10, 97. https://doi.org/10.1186/s13643-021-01640-6
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under an Attribution 4.0 International (CC BY 4.0) License. that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Last updated 03/05/21
