Artificial intelligence techniques for optimizing the efficiency in public works contracting selection processes
DOI:
https://doi.org/10.26439/interfases2018.n011.2951Keywords:
artificial neural networks, decision-making, riskAbstract
The present article proposes to design a model that provides a generic architecture which acts autonomously in public works contracting selection processes, in order to generate an automated decision criterion in the event of a tie. For the Simplified Tender selection process, in case of a tie, it is proposed to choose the bidder by means of an electronic lottery based on a controlled randomization system of encryption and transformation. For the Public Bidding selection process, in the event of a tie, the bidder is chosen by means of a predicted compliance index according to the behavior of the companies when executing similar infrastructure projects. To this end, a model that predicts the probability of success or failure of the bidder to execute a project before initiating it is generated, using artificial neural networks as an analysis tool. This paper reviews the common characteristics of artificial neural networks.
Downloads
References
Apaza, M. (2003). Balanced Scorecard: Gerencia estratégica y de valor. Lima: Instituto de Investigaciones del Pacífico.
Basili, V., Caldiera, G. y Rombach, H. D. (1994). The Goal Question Metric Approach. College Park: Departamento de Ciencias de la Computación de la Universidad de Maryland.
Cantone, G., Sarciá, S. , y Basili, V. (2007). A Statistical Neural Network for Risk Management Process. College Park: Departamento de Ciencias de la Computación de la Universidad de Maryland.
Davis, D. (2000). Investigación en administración para la toma de decisiones. México: Thomson.
Del Carpio, J., y Eyzaguirre, R. (2007). Análisis de riesgo en la evaluación de alternativas de inversión utilizando Crystal Ball. Industrial Data, 10(1), 55-58.
Dixon, J.R. (1970). Diseño en ingeniería: inventiva, análisis y toma de decisiones. México Limusa-Wiley .
González Ramírez, M. R. (2001). Sistemas de información para la empresa. Alicante: Publicaciones de la Universidad de Alicante.
Greenwood, W. (1978). Teoría de decisiones y sistemas de información. México: Trillas.
Herrera, F., Herrera-Viedma, E., Verdegay, J.L. (1996). Direct approach processes in group decision making using linguistic OWA operators. Fuzzy Sets and Systems, 79, 175-190.
Huber, G. P. (1984). Toma de decisiones en la gerencia. México: Trillas.
Isasi, P., y Galván, I. (2004). Redes neuronales artificiales: Un enfoque práctico. Madrid: Pearson Education.
Keen, P. G. W. Scoot-Morton, M. S. (1978). Decision support systems: Organizational perspective. Addison Wesley.
Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological cybernetics, 43(1), 59-69.
Lezama, C. (2007). Indicadores de gestión. Recuperado de https://docplayer.es/49436198-Indicadores-de-gestion-cruz-lezama-osain.html
Matonis, J. (31 de agosto del 2012). BitZino And The Dawn Of ‘Provably Fair’ Casino Gaming. Forbes. Recuperado de https://www.forbes.com/sites/jonmatonis/2012/08/31/bitzino-and-thedawn-of-provably-fair-casino-gaming/#597270027593
Menguzzato, M., Renau, J.J. (1995). La dirección estratégica de la empresa: Un enfoque innovador del
management. Barcelona: Ariel.
Michie, D., Spiegelhalter, D. J. y Taylor, C. C. (1994). Machine learning, neural and statistical classification.
Londres: Ellis Horwood.
Moody, P.E. (1991). Toma de decisiones gerenciales. Bogotá: Mc Graw Hill Latinoamericana.
Rumelhart, D. E., Hinton, G.E. y Williams, R. J. (1986). Learning Internal Representations by Error Propagation. En: Rumelhart, D. E., McClelland, J. L. y The PDP Research Group, Parallel Distributed Processing: Explorations in the Microstructure of Cognition (Vol. 1). Boston: MIT Press.
Salgueiro, A. (2001). Indicadores de gestión y cuadro de mando. Madrid: Ediciones Diaz Santos.
Sarcià, S. A., Cantone, G., y Basili, V. R. (2007). A Statistical Neural Network Framework For Risk Management Process. Procedings of ICSOFT, Barcelona, SP, 2007.
Sarle, W. S. (2002). Ai-faq/neural-nets. Recuperado de ftp://ftp.sas.com/pub/neural/FAQ.html
Serra, D. (2004). Métodos cuantitativos para la toma de decisiones. Madrid: Gestión 2000.
Simon, H.A. (1977). The new science of management decision. New Jersey: Prentice-Hall.
Simon, H.A. (1980). El comportamiento administrativo: Estudio de los procesos decisorios en la organización administrativa. Madrid: Aguilar.
Smith, J. C. (1990). A neural network: could it work for you? Financial Executive, 6(3), 26-30.
Zimmermann, H. J. (1991). Fuzzy sets theory and its application. Boston: Kluwer Academic Publishers.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under an Attribution 4.0 International (CC BY 4.0) License. that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Last updated 03/05/21