Aprendizaje automático aplicado para predecir la rotación de empleados en una empresa
DOI:
https://doi.org/10.26439/ing.ind2025.n049.7934Palabras clave:
aprendizaje automático, redes neuronales, rotación de personal, pronósticos, aprendizaje conjunto, análisis de regresión logísticaResumen
La rotación de personal es un proceso natural en las organizaciones que refleja la cantidad de empleados que dejan la empresa en un periodo determinado. Una alta rotación genera costos significativos, por lo que comprender sus causas y planificar acciones correctivas es esencial para mantener la rotación de personal en niveles aceptables. Este artículo analiza la rotación en organizaciones mediante modelos predictivos. Se desarrollaron y compararon dos algoritmos de aprendizaje automático (regresión logística binaria y bosque aleatorio) y uno de aprendizaje profundo (redes neuronales artificiales), utilizando el conjunto de datos de IBM disponible en Kaggle. El artículo se estructura en cinco partes: introducción al problema, desarrollo metodológico, análisis de resultados, discusión y conclusión. Las redes neuronales demostraron mayor eficiencia en la predicción. Se concluye que el uso de modelos predictivos puede ayudar a las empresas a anticipar la rotación, optimizar procesos de selección y fomentar una gestión de recursos humanos más ética y proactiva.
Descargas
Referencias
Adeyefa, A. E., Adedipe, A., Adebayo, I. N., & Adesuyan, A. J. (2023). Influence of green human resource management practices on employee retention in the hotel industry. African Journal of Hospitality, Tourism and Leisure, 12(1), 114-130. https://doi.org/10.46222/ajhtl.19770720.357
Al-Suraihi, W. A., Samikon, S. A., Al-Suraihi, Al-H. A., & Ibrahim, I. (2021). Employee turnover: Causes, importance and retention strategies. European Journal of Business Management and Research, 6(3), 1-10. https://doi.org/10.24018/ejbmr.2021.6.3.893
Albarracin Manrique, M. A. & Souza, F. (2021, October 6-7). Real Estate Price Valuation Using Machine Learning (in Portuguese). En The 20th Conferência Internacional da Latin American Real Estate Society (LARES). https://lares.architexturez.net/doc/lares-2021-4dqw
Almomani, A., Alauthman, M., Shatnawi, M. T., Alweshah, M., Alrosan, A., Alomoush, W., Gupta, B. B., Gupta, B. B., & Gupta, B. B. (2022). Phishing website detection with semantic features based on machine learning classifiers: A comparative study. International Journal on Semantic Web and Information Systems, 18(1), 1-24. https://doi.org/10.4018/IJSWIS.297032
Alsubaie, F. & Aldoukhi, M. (2024). Using machine learning algorithms with improved accuracy to analyze and predict employee attrition. Decision Science Letters, 13(1), 1-18. https://doi.org/10.5267/j.dsl.2023.12.006
An, S. H. (2019). Employee voluntary and involuntary turnover and organizational performance: Revisiting the hypothesis from classical public administration. International Public Management Journal, 22(3), 444-469. https://doi.org/10.1080/10967494.2018.1549629
Cloutier, O., Felusiak, L., Hill, C., & Pemberton-Jones, E. J. (2015). The importance of developing strategies for employee retention. Journal of Leadership, Accountability and Ethics, 12(2), 119-129. http://www.na-businesspress.com/JLAE/Pemberton-JonesEJ_Web12_2_.pdf
Dalton, D. R. & Mesch, D. J. (1990). The impact of flexible scheduling on employee attendance and turnover. Administrative Science Quarterly, 35(2), 370-387. https://doi.org/10.2307/2393395
Duda, J., & Žůrková, L. (2013). Costs of employee turnover. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 61(7), 2071-2075. https://doi.org/10.11118/actaun201361072071
Efron, B. & Hastie, T. (2016). Computer Age Statistical Inference Algorithms, Evidence, and Data Science. Cambridge University Press. https://www.cambridge.org/core/books/computer-age-statistical-inference/E32C1911ED937D75CE159BBD21684D37
El Maanaoui, D., Jeaab, K., Najmi, H., Saoudi, Y., & Falloul, M. E. M. (2024). Machine learning in finance: Case of credit scoring. In Y. Farhaoui, A. Hussain, T. Saba, H. Taherdoost, & A. Verma (Eds.), Artificial Intelligence, Data Science and Applications. ICAISE 2023 (Lecture Notes in Networks and Systems, 837, 8-16). Springer. https://doi.org/10.1007/978-3-031-48465-0_2
Fallucchi, F., Coladangelo, M., Giuliano, R., & William De Luca, E. (2020). Predicting employee attrition using machine learning techniques. Computers, 9(4), 86. https://doi.org/10.3390/computers9040086
Fernandes, S. L., & Sharma, T. K. (2022). Artificial intelligence in industrial applications: Approaches to solve the intrinsic industrial optimization problems (1st ed.). Springer International Publishing. https://doi.org/10.1007/978-3-030-85383-9
Gaurav, A., Gupta, B. B., & Panigrahi, P. K. (2023). A comprehensive survey on machine learning approaches for malware detection in IoT-based enterprise information system. Enterprise Information Systems, 17(3). https://doi.org/10.1080/17517575.2021.2023764
Géron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. O’Reilly Media.
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
Gundlach, H. A. D. (2025). What really influences teacher attrition, migration, and retention? The Australian Educational Researcher, 52, 3079-3099. https://doi.org/10.1007/s13384-025-00842-4
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning data minin`g, inference, and prediction (2nd ed). Springer. https://link.springer.com/book/10.1007/978-0-387-84858-7
Hur, H. & Abner, G. (2023). What makes public employees want to leave their job? A meta-analysis of turnover intention predictors among public sector employees. Public Administration Review, 84(1), 115-142. https://doi.org/10.1111/puar.13601
James, G., Witten, D., Hastie, T., Tibshirani, R. & Taylor J. (2023). An introduction to statistical learning with applications in Python. Springer.
Juvitayapun, T. (2021, Jan 21-24). Employee turnover prediction: The impact of employee event features on interpretable machine learning methods. In The 13th International Conference on Knowledge and Smart Technology (KST), 181-185. https://doi.org/10.1109/KST51265.2021.9415794
Kelleher, J. D. & Tierney, B. (2018). Data science. The MIT Press.
Kelleher, J. D. (2019). Deep learning. The MIT Press.
Kelleher, J. D., MacNamee, B., & D’Arcy, A. (2015). Fundamentals of machine learning for predictive data analytics: Algorithms, worked examples, and case studies. MIT Press.
Marsland, S. (2014). Machine learning: An algorithmic perspective (2nd ed.). Chapman and Hall/CRC. https://doi.org/10.1201/b17476
Murphy, K. P. (2022). Probabilistic Machine Learning: An introduction. MIT Press.
Murphy, K. P. (2023). Probabilistic Machine Learning: Advanced Topics. MIT Press.
Nagpal, P., Pawar, A., & Sanjay H. M. (2024, Feb 21-23). Predicting employee attrition through HR analytics: A machine learning approach. In The 4th International Conference on Innovative Practices in Technology and Management (ICIPTM). 1-4. https://doi.org/10.1109/ICIPTM59628.2024.10563285
Park, J., Feng, Y., & Jeong, S. P. (2024). Developing an advanced prediction model for new employee turnover intention utilizing machine learning techniques. Scientific Reports, 14, 1221. https://doi.org/10.1038/s41598-023-50593-4
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., & Cournapeau, D. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825-2830. https://inria.hal.science/hal-00650905v2
Pelly, D. (2023). Worker well-being and quit intentions: Is measuring job satisfaction enough? Social Indicators Research, 169, 397-441. https://doi.org/10.1007/s11205-023-03166-x
Prokopets, E. (2024). The true cost of hiring an employee in 2024 [blog entry]. Toggl. https://toggl.com/blog/cost-of-hiring-an-employee
Ribes, E., Touahri, K., & Perthame, B. (2017). Employee turnover prediction and retention policies design: a case study. Computers and Society. https://doi.org/10.48550/arXiv.1707.01377
Rombaut, E, & Guerry, M. A. (2018). Predicting voluntary turnover through human resources database analysis. Management Research Review, 41(1), 96-112. https://doi.org/10.1108/MRR-04-2017-0098
Russell, S. J., & Norvig, P. (2021). Artificial intelligence: A modern approach. Pearson.
Sadiku, M., Ashaolu, T. J., Ajayi-Majebi, A., & Musa, S. (2021). Artificial intelligence in social media. International Journal of Scientific Advances, 2(1), 15-20. https://doi.org/10.51542/IJSCIA.V2I1.4
Saradhi, V. V., & Palshikar, G. K. (2011). Employee churn prediction. Expert Systems with Applications, 38(3), 1999-2006. https://doi.org/10.1016/j.eswa.2010.07.134
Sharma, S. & Sharma, K. (2023, June 23-25). Analyzing Employee’s Attrition and Turnover at Organization Using Machine Learning Technique. In The 3rd International Conference on Intelligent Technologies (CONIT). 1-7. https://doi.org/10.1109/CONIT59222.2023.10205676
Solomon, C. H., Mohankumar D. & Sivanandam, C. (2024, Feb 22-23). Employee attrition analysis using machine learning. In The 2nd International Conference on Emerging Trends in Information Technology and Engineering (ICETITE). https://doi.org/10.1109/ic-ETITE58242.2024.10493429
Soltaninejad, M., Aghazadeh, R., Shaghaghi, S., & Zarei, M. (2024). Using machine learning techniques to forecast Mehram company’s sales: A case study. Journal of Business and Management Studies, 6(2), 42-53. https://doi.org/10.32996/jbms.2024.6.2.4Subhash, P. (2017). IBM HR analytics employee attrition & performance. Kaggle. https://www.kaggle.com/pavansubhasht/ibm-hr-analytics-attrition-dataset
Tuzun, I. K. & Kalemci, R. A. (2012). Organizational and supervisory support in relation to employee turnover intentions. Journal of Managerial Psychology, 27(5), 518-534. https://doi.org/10.1108/02683941211235418
Vasantham, S. T. & Aithal, S. (2022). A systematic review on importance of employee turnover with special reference to turnover strategies. Irish Interdisciplinary Journal of Science & Research, 6(4), 28-42. https://doi.org/10.46759/iijsr.2022.6404
Veglio, V., Romanello, R., & Pedersen, T. (2024). Employee turnover in multinational corporations: a supervised machine learning approach. Review of Managerial Science, 19, 687-728. https://doi.org/10.1007/s11846-024-00769-7
Wang, W. & Sun, R. (2020). Does organizational performance affect employee turnover? A re-examination of the turnover-performance relationship. Public Administration, 98(1), 210-225. https://doi.org/10.1111/padm.12648
Wassan, S., Suhail, B., Mubeen, R., Raj, B., Agarwal, U., Khatri, E., Gopinathan, S., & Dhiman, G. (2022). Gradient boosting for health IoT federated learning. Sustainability, 14(24), 16842. https://doi.org/10.3390/su142416842









