Predicting Employee Turnover Using Applied Machine Learning

Authors

DOI:

https://doi.org/10.26439/ing.ind2025.n049.7934

Keywords:

machine learning, neural networks, labor turnover, forecasting, ensemble learning, logistic regression analysis

Abstract

Employee turnover is a fundamental process within organizations, reflecting the number of employees who leave a company within a specified timeframe. High turnover incurs substantial costs, so comprehending its causes and implementing corrective actions is crucial for maintaining acceptable levels of employee retention. This article uses predictive models to analyze employee turnover. The researcher developed and compared two machine learning algorithms (Binary Logistic Regression and Random Forest) and one deep learning algorithm (Artificial Neural Networks), utilizing the IBM dataset available on Kaggle. The article is structured in five parts: an introduction to the problem, methodological development, analysis of results, discussion, and conclusion. The findings indicate that neural networks are more efficient at prediction. Ultimately, the use of predictive models can help companies anticipate turnover, optimize selection processes, and promote more ethical and proactive human resource management.

Downloads

Download data is not yet available.

References

Adeyefa, A. E., Adedipe, A., Adebayo, I. N., & Adesuyan, A. J. (2023). Influence of green human resource management practices on employee retention in the hotel industry. African Journal of Hospitality, Tourism and Leisure, 12(1), 114-130. https://doi.org/10.46222/ajhtl.19770720.357

Al-Suraihi, W. A., Samikon, S. A., Al-Suraihi, Al-H. A., & Ibrahim, I. (2021). Employee turnover: Causes, importance and retention strategies. European Journal of Business Management and Research, 6(3), 1-10. https://doi.org/10.24018/ejbmr.2021.6.3.893

Albarracin Manrique, M. A. & Souza, F. (2021, October 6-7). Real Estate Price Valuation Using Machine Learning (in Portuguese). En The 20th Conferência Internacional da Latin American Real Estate Society (LARES). https://lares.architexturez.net/doc/lares-2021-4dqw

Almomani, A., Alauthman, M., Shatnawi, M. T., Alweshah, M., Alrosan, A., Alomoush, W., Gupta, B. B., Gupta, B. B., & Gupta, B. B. (2022). Phishing website detection with semantic features based on machine learning classifiers: A comparative study. International Journal on Semantic Web and Information Systems, 18(1), 1-24. https://doi.org/10.4018/IJSWIS.297032

Alsubaie, F. & Aldoukhi, M. (2024). Using machine learning algorithms with improved accuracy to analyze and predict employee attrition. Decision Science Letters, 13(1), 1-18. https://doi.org/10.5267/j.dsl.2023.12.006

An, S. H. (2019). Employee voluntary and involuntary turnover and organizational performance: Revisiting the hypothesis from classical public administration. International Public Management Journal, 22(3), 444-469. https://doi.org/10.1080/10967494.2018.1549629

Cloutier, O., Felusiak, L., Hill, C., & Pemberton-Jones, E. J. (2015). The importance of developing strategies for employee retention. Journal of Leadership, Accountability and Ethics, 12(2), 119-129. http://www.na-businesspress.com/JLAE/Pemberton-JonesEJ_Web12_2_.pdf

Dalton, D. R. & Mesch, D. J. (1990). The impact of flexible scheduling on employee attendance and turnover. Administrative Science Quarterly, 35(2), 370-387. https://doi.org/10.2307/2393395

Duda, J., & Žůrková, L. (2013). Costs of employee turnover. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 61(7), 2071-2075. https://doi.org/10.11118/actaun201361072071

Efron, B. & Hastie, T. (2016). Computer Age Statistical Inference Algorithms, Evidence, and Data Science. Cambridge University Press. https://www.cambridge.org/core/books/computer-age-statistical-inference/E32C1911ED937D75CE159BBD21684D37

El Maanaoui, D., Jeaab, K., Najmi, H., Saoudi, Y., & Falloul, M. E. M. (2024). Machine learning in finance: Case of credit scoring. In Y. Farhaoui, A. Hussain, T. Saba, H. Taherdoost, & A. Verma (Eds.), Artificial Intelligence, Data Science and Applications. ICAISE 2023 (Lecture Notes in Networks and Systems, 837, 8-16). Springer. https://doi.org/10.1007/978-3-031-48465-0_2

Fallucchi, F., Coladangelo, M., Giuliano, R., & William De Luca, E. (2020). Predicting employee attrition using machine learning techniques. Computers, 9(4), 86. https://doi.org/10.3390/computers9040086

Fernandes, S. L., & Sharma, T. K. (2022). Artificial intelligence in industrial applications: Approaches to solve the intrinsic industrial optimization problems (1st ed.). Springer International Publishing. https://doi.org/10.1007/978-3-030-85383-9

Gaurav, A., Gupta, B. B., & Panigrahi, P. K. (2023). A comprehensive survey on machine learning approaches for malware detection in IoT-based enterprise information system. Enterprise Information Systems, 17(3). https://doi.org/10.1080/17517575.2021.2023764

Géron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. O’Reilly Media.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

Gundlach, H. A. D. (2025). What really influences teacher attrition, migration, and retention? The Australian Educational Researcher, 52, 3079-3099. https://doi.org/10.1007/s13384-025-00842-4

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning data minin`g, inference, and prediction (2nd ed). Springer. https://link.springer.com/book/10.1007/978-0-387-84858-7

Hur, H. & Abner, G. (2023). What makes public employees want to leave their job? A meta-analysis of turnover intention predictors among public sector employees. Public Administration Review, 84(1), 115-142. https://doi.org/10.1111/puar.13601

James, G., Witten, D., Hastie, T., Tibshirani, R. & Taylor J. (2023). An introduction to statistical learning with applications in Python. Springer.

Juvitayapun, T. (2021, Jan 21-24). Employee turnover prediction: The impact of employee event features on interpretable machine learning methods. In The 13th International Conference on Knowledge and Smart Technology (KST), 181-185. https://doi.org/10.1109/KST51265.2021.9415794

Kelleher, J. D. & Tierney, B. (2018). Data science. The MIT Press.

Kelleher, J. D. (2019). Deep learning. The MIT Press.

Kelleher, J. D., MacNamee, B., & D’Arcy, A. (2015). Fundamentals of machine learning for predictive data analytics: Algorithms, worked examples, and case studies. MIT Press.

Marsland, S. (2014). Machine learning: An algorithmic perspective (2nd ed.). Chapman and Hall/CRC. https://doi.org/10.1201/b17476

Murphy, K. P. (2022). Probabilistic Machine Learning: An introduction. MIT Press.

Murphy, K. P. (2023). Probabilistic Machine Learning: Advanced Topics. MIT Press.

Nagpal, P., Pawar, A., & Sanjay H. M. (2024, Feb 21-23). Predicting employee attrition through HR analytics: A machine learning approach. In The 4th International Conference on Innovative Practices in Technology and Management (ICIPTM). 1-4. https://doi.org/10.1109/ICIPTM59628.2024.10563285

Park, J., Feng, Y., & Jeong, S. P. (2024). Developing an advanced prediction model for new employee turnover intention utilizing machine learning techniques. Scientific Reports, 14, 1221. https://doi.org/10.1038/s41598-023-50593-4

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., & Cournapeau, D. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825-2830. https://inria.hal.science/hal-00650905v2

Pelly, D. (2023). Worker well-being and quit intentions: Is measuring job satisfaction enough? Social Indicators Research, 169, 397-441. https://doi.org/10.1007/s11205-023-03166-x

Prokopets, E. (2024). The true cost of hiring an employee in 2024 [blog entry]. Toggl. https://toggl.com/blog/cost-of-hiring-an-employee

Ribes, E., Touahri, K., & Perthame, B. (2017). Employee turnover prediction and retention policies design: a case study. Computers and Society. https://doi.org/10.48550/arXiv.1707.01377

Rombaut, E, & Guerry, M. A. (2018). Predicting voluntary turnover through human resources database analysis. Management Research Review, 41(1), 96-112. https://doi.org/10.1108/MRR-04-2017-0098

Russell, S. J., & Norvig, P. (2021). Artificial intelligence: A modern approach. Pearson.

Sadiku, M., Ashaolu, T. J., Ajayi-Majebi, A., & Musa, S. (2021). Artificial intelligence in social media. International Journal of Scientific Advances, 2(1), 15-20. https://doi.org/10.51542/IJSCIA.V2I1.4

Saradhi, V. V., & Palshikar, G. K. (2011). Employee churn prediction. Expert Systems with Applications, 38(3), 1999-2006. https://doi.org/10.1016/j.eswa.2010.07.134

Sharma, S. & Sharma, K. (2023, June 23-25). Analyzing Employee’s Attrition and Turnover at Organization Using Machine Learning Technique. In The 3rd International Conference on Intelligent Technologies (CONIT). 1-7. https://doi.org/10.1109/CONIT59222.2023.10205676

Solomon, C. H., Mohankumar D. & Sivanandam, C. (2024, Feb 22-23). Employee attrition analysis using machine learning. In The 2nd International Conference on Emerging Trends in Information Technology and Engineering (ICETITE). https://doi.org/10.1109/ic-ETITE58242.2024.10493429

Soltaninejad, M., Aghazadeh, R., Shaghaghi, S., & Zarei, M. (2024). Using machine learning techniques to forecast Mehram company’s sales: A case study. Journal of Business and Management Studies, 6(2), 42-53. https://doi.org/10.32996/jbms.2024.6.2.4Subhash, P. (2017). IBM HR analytics employee attrition & performance. Kaggle. https://www.kaggle.com/pavansubhasht/ibm-hr-analytics-attrition-dataset

Tuzun, I. K. & Kalemci, R. A. (2012). Organizational and supervisory support in relation to employee turnover intentions. Journal of Managerial Psychology, 27(5), 518-534. https://doi.org/10.1108/02683941211235418

Vasantham, S. T. & Aithal, S. (2022). A systematic review on importance of employee turnover with special reference to turnover strategies. Irish Interdisciplinary Journal of Science & Research, 6(4), 28-42. https://doi.org/10.46759/iijsr.2022.6404

Veglio, V., Romanello, R., & Pedersen, T. (2024). Employee turnover in multinational corporations: a supervised machine learning approach. Review of Managerial Science, 19, 687-728. https://doi.org/10.1007/s11846-024-00769-7

Wang, W. & Sun, R. (2020). Does organizational performance affect employee turnover? A re-examination of the turnover-performance relationship. Public Administration, 98(1), 210-225. https://doi.org/10.1111/padm.12648

Wassan, S., Suhail, B., Mubeen, R., Raj, B., Agarwal, U., Khatri, E., Gopinathan, S., & Dhiman, G. (2022). Gradient boosting for health IoT federated learning. Sustainability, 14(24), 16842. https://doi.org/10.3390/su142416842

Downloads

Published

2025-12-19

Issue

Section

Science and technology

How to Cite

Albarracin Manrique, M. A. (2025). Predicting Employee Turnover Using Applied Machine Learning. Ingeniería Industrial, 049, 214-238. https://doi.org/10.26439/ing.ind2025.n049.7934