Influence of position of mq-6 sensor and elapsed time on the concentration detection of LPG in a domestic leak
DOI:
https://doi.org/10.26439/ing.ind2022.n43.6112Keywords:
Arduino, Matlab, machine learning, MQ-6, LPG, gas detectionAbstract
Gas leaks in Lima and Ica (Peru) increase every year, causing accidents and irreparable damage to the population. In this article, a controlled leak was produced using a two-burner kitchen and an array of MQ-6 sensors positioned at different angles (45°, 0° and 30°) with respect to the kitchen. The results show that, if the kitchen is in a high position (87 cm), the detected concentration is lower, but the detection is faster (6,419 s) if the arrangement is located 50 cm from the origin of the leak. The detection time is between 13,515 s and 21,740 s and the maximum concentration detected is 98 ppm. The best adapted learning model is Support Vector Machine, with an RMSE of 4,61 ppm. It is concluded that the best position for gas detection was at a height of 47 cm above the ground, at 50 cm from the sensor and at an angle of 0°. The detection time is 13,84 s. Finally, it is concluded that 30 seconds of leakage are not enough to reach the harmful limit (147 ppm).
Downloads
References
Adekitan, A. I., Matthews, V. O., & Olasunkanmi, O. (2019). A microcontroller-based gas leakage detection and evacuation system. ICSPC, 152, 182-186. DOI: 10.1109/ICSPC46172.2019.8976583
Ajiboye, A. T., Opadji, J. F., Yusuf, A. O., & Popoola, J. O. (2021). Analytical determination of load resistance value for MQ series gas sensors: MQ-6 as case study. TELKOMNIKA, 18, 575-582. DOI: 10.12928/TELKOMNIKA.v19i2.17427
Benavides, J. (2020). Dispositivo inteligente con tecnología móvil para la detección y prevención de accidentes causados por fuga de gas doméstico: modelo de implementación para la empresa Intec PC [Tesis de licenciatura]. Universidad de las Fuerzas Armadas]. Repositorio de las Fuerzas Armadas. https://dspace.uniandes.edu.ec/handle/123456789/11177
Budianto, A., Muhtadan, Dipta, I. M. Y., & Iman, A. N. (2020). Development of liquified petroleum gas (LPG) leakage detection wheeled robot on horizontal pipes based on Arduino Uno. Journal of Physis: Conference Series, 1511, 10-12. DOI: 10.1088/1742-6596/1511/1/012087
Cho, J.H. (2020). Detection of smoking indoor environments using machine learning. Applied Sciences, 10, 1-17. DOI: 10.3390/app10248912
Cortez, P. (2010). Data mining with neural networks and support vector machines using the R/rminer tool. En P. Perner (Ed.), Advances in data mining. Applications and theoretical aspects. Proceedins of the 10th Industrial Conference ICDM 2010 (pp. 572-583). Springer.
Debnath, S., Ahmed, S., Das, S., Nahid, A.-A., & Bairagi, A. K. (2020, 28 y 29 de novimebre). Iot based low-cost gas leakage, fire, and temperature detection system with call facilities [Presentación de escrito]. 2nd International Conference on Advanced Information and Communication Technology. Dacas, Bangladesh. DOI: 10.1109/ICAICT51780.2020.9333530
Dey, A. (2016). Machine learning algorithms: a review. International Journal of Computer Science and Information Technologies, 7(3), 1174-1179. https://www.semanticscholar.org/paper/Machine-Learning-Algorithms-%3A-A-Review-Dey/56e8863838b4dcc4790108cd1e7e680a104a7c30
Fatkiyah, E., Persada, D., & Andayati, D. (2019). Early detection of leaks on gas cylinders using arduino based MQ- 6 sensors. Journal of Physis: Conference Series, 1413, 5-9. DOI: 10.1088/1742-6596/1413/1/012030
Hanwei Sensors. (2019). Techincal Data of MQ-6 Gas Sensor.
Hernández, R., Fernández, C., & Baptista, M. D. P. (2017). Metodología de la investigación (6ª ed.). Interamericana Editores.
Hinestroza, D. (2018). El machine learning a través de los tiempos y los aportes a la humanidad [Tesis de bachiller]. Repositorio de la Universidad Libre Seccional Pereira. https://repository.unilibre.edu.co/handle/10901/17289
Höfner, S., Schütze, A., Hirth, M., Kuhn, J., & Brück, B. (2021). Calibration of metal oxide semiconductor gas sensors by high school students. International Journal of Online and Biomedical Engineering, 17, 4-20. DOI: 10.3991/ijoe. v17i04.19215
Instituto Nacional de Estadística e Informática. (2017). Perú: perfil sociodemográfico. Informe nacional. Censos 2017: XII de población; VIII de vivienda y III de comunidades indígenas.
Intendencia Nacional de Bomberos del Perú. (2019). Emergencias atendidas por el CGBVP periodo 2013 al 2017. Investigación y Gestión de la Información. https://www.inbp.gob.pe/wp-content/plugins/rigi/uploads/D11AD0E7-0354-05A9-F77A-09F5F414C491.pdf
Kamal, U., Ahmed, S., Toha, T. R., Islam, N., & Alim Al Islam, A. B. M. (2020). Intelligent human counting through environmental sensing in closed indoor settings. Mobile Networks and Applications, 25, 474-490. DOI: 10.1007/s11036-019-01311-w
Limagas. (2018). Hoja de datos de seguridad (MSDS) del GLP.
Mallik, A., Ahmed, S., Hossain, G. M. M., & Rahman, M. R. (2020). IoT utilized gas-leakage monitoring system with adaptive controls applicable to dual fuel powered naval vessels/ships: Development & implementation. Cybernetics and Information Technologies, 20(1), 138-155. https://doi.org/10.2478/cait-2020-0010
Mensch, A. E., Hamins, A., Tam, W. C., Lu, Z.Q.J., Markell, K., You, C., & Kupferschmid, M. (2021). Sensor and machine learning models to prevent cooktop ignition and ignore normal cooking. Fire Technology, 57, 2981-3004. https://doi.org/10.1007/s10694-021-01112-2
Meris, P. R., Dimaunaham, E., De la Cruz, J. C., Fadchar, N. A., Manuel, M. C., Bonaobra, J. C. C., Ranosa, F. J. I., Mangaoang, J. L. D., & Reyes, P. C. (2020). IOT based -automated indoor air quality and LPG leak detection control system using support vector machine. 2020 11th IEEE Control and System Graduate Research Colloquium. DOI: 10.1109/ICSGRC49013.2020.9232472
Nasution, T. H., Nasution, R. Y., Putri, K. A., & Nasution, C.F. (2019). Automatic regulator design for liquified petroleum gas. IOP Publishing, 648, 5-6. DOI: 10.1088/1757-899X/648/1/012012
Pajares, M., & Alcantar, L. (2020). Implementación de un sistema de vigilancia de gas licuado de petróleo en estaciones de servicio de combustible utilizando una plataforma Adafruit.IO [Tesis de bachiller]. Repositorio de la Universidad de Ciencias y Humanidades. https://repositorio.uch.edu.pe/handle/20.500.12872/545
Rachman, F. Z., Yanti, N., Hadiyanto, H., Suhaedi, S., Hidayati, Q., Widagda, M. E. P., & Saputra, B. A. (2019). Design of the early fire detection fuzzy logic using multisensor. International Journal of Online and Biomedical Engineering, 732, 012039. DOI: 10.1088/1757-899X/732/1/012039
Raja Kumar, J. R., Pandey, R. K., & Sarkar, B. K. (2019). Pollutant gases detection using machine learning on benchmark research datasets. Procedia Computer Science, 152, 360-366. DOI: 10.1016/j.procs.2019.05.005
Ramírez, J. (2016). Diseño e implementación de un sistema para detección y monitoreo de la concentración de gas GLP mediante arreglo de sensores orientado al sector residencial [Tesis de licenciatura]. Repositorio de la Universidad UNIANDES. http://repositorio.espe.edu.ec/handle/21000/12454
Rumantri, R., Khakim, M. Y. N, & Iskandar, I. (2018). Design and characterization of low-cost sensors for air quality monitoring systems. Jurnal Pendidikan IPA Indonesia, 7, 347-354. DOI: 10.15294/jpii.v7i3.14444
Singla, P., Jain, P., & Pahuja, R. (2017). Implementation of gas scathe admonisher and control system prototype. Modern education and Computer Science, 2, 23-38. DOI: 10.5815/ijem.2017.02.03
Suparman, M. A. B., & Jong, S.L. (2019). Analytical determination of load resistance value for MQ -series gas sensors: MQ-6 as case study. Indonesian Journal of Electrical Engineering and Computer Science, 15, 1102-1108. https://ijeecs.iaescore.com/index.php/IJEECS/article/view/19103
Supriyono, H., Anton, S., Fadlilah, U., & Harismah, K. (2020). Portable machine with Android application display for measuring CO and HC of vehicle exhaust gas. Journal of Physics: Conference Series, 1524, 012110. DOI: 10.1088/1742-6596/1524/1/012110
The National Institute for Occupational Safety and Health. (s.f). NIOSH poket guide to chemical hazards. CDC. Recuperado el 5 de julio del 2022, de https://www.cdc.gov/niosh/docs/2005-149/pdfs/2005-149.pdf
Zhao, M., Huang, T., Liu, C., Chen, M., Ji, S., Christopher, D. M., & Li, X. (2021). Leak localization using distributed sensors and machine learning for hydrogen releases from a fuel cell vehicle in a parking garage. 11th IEEE Control and System Graduate Research Colloquium, 46, 1420-1433. DOI: 10.1016/j.ijhydene.2020.09.218
