Comparación de pronósticos con demanda intermitente en una empresa de empaques de plástico
Resumen
En el presente artículo se comparan tres métodos de pronósticos de demanda, aplicados en una empresa peruana productora de envases de plástico para el sector cosmético con demanda intermitente. Los métodos comparados fueron Croston, Croston TSB y suavizamiento exponencial. Las métricas de error que se usaron y compararon para realizar los pronósticos fueron el error medio absoluto, el error porcentual medio y el error cuadrático medio. Se observó que el modelo de Croston TSB obtuvo un mejor rendimiento que los otros dos, con un error menor a 20 % contra la venta real.
Descargas
Citas
Altay, N., Rudisill, F., & Litteral, L. A. (2008). Adapting Wright’s modification of Holt’s method to forecasting intermittent demand. International Journal of Production Economics, 111(2), 389–408. https://doi.org/10.1016/j.ijpe.2007.01.009
Amirkolaii, K. N., Baboli, A., Shahzad, M. K., & Tonadre, R. (2017). Demand forecasting for irregular demands in business aircraft spare parts supply chains by using Artificial Intelligence (AI). IFAC-PapersOnLine, 50(1), 15221–15226. https://doi.org/10.1016/j.ifacol.2017.08.2371
Babai, M. Z., Syntetos, A., & Teunter, R. (2014). Intermittent demand forecasting: An empirical study on accuracy and the risk of obsolescence. International Journal of Production Economics, 157(1), 212–219. https://doi.org/10.1016/j.ijpe.2014.08.019
Cheng, C. Y., Chiang, K. L., & Chen, M. Y. (2016). Intermittent demand forecasting in a tertiary pediatric intensive care unit. Journal of Medical Systems, 40, Artículo 217. https://doi.org/10.1007/S10916-016-0571-9
Croston, J. D. (1972). Forecasting and stock control for inermittent demands. Operational Research Quarterly (1970-1977), 23(3), 289-303. http://dx.doi.org/10.2307/3007885
Gutierrez, R. S., Solis, A. O., & Mukhopadhyay, S. (2008). Lumpy demand forecasting using neural networks. International Journal of Production Economics, 111(2), 409–420. https://doi.org/10.1016/j.ijpe.2007.01.007
Kourentzes, N. (2013). Intermittent demand forecasts with neural networks. International Journal of Production Economics, 143(1), 198–206. https://doi.org/10.1016/j.ijpe.2013.01.009
Nikolopoulos, K. I., Babai, M. Z., & Bozos, K. (2016). Forecasting supply chain sporadic demand with nearest neighbor approaches. International Journal of Production Economics, 177, 139–148. https://doi.org/10.1016/j.ijpe.2016.04.013
Petropoulos, F., & Kourentzes, N. (2015). Forecast combinations for intermittent demand. Journal of the Operational Research Society, 66(6), 914–924. https://doi.org/10.1057/jors.2014.62
Prak, D., Teunter, R., & Syntetos, A. (2017). On the calculation of safety stocks when demand is forecasted. European Journal of Operational Research, 256(2), 454–461. https://doi.org/10.1016/j.ejor.2016.06.035
Prestwich, S. D., Tarim, S. A., & Rossi, R. (2021). Intermittency and obsolescence: A Croston method with linear decay. International Journal of Forecasting, 37(2), 708–715. https://doi.org/10.1016/j.ijforecast.2020.08.010
Sharma, M., Joshi, S., Luthra, S., & Kumar, A. (2021). Managing disruptions and risks amidst COVID-19 outbreaks: role of blockchain technology in developing resilient food supply chains. Operations Management Research, 15, 268-281. https://doi.org/10.1007/s12063-021-00198-9
Syntetos, A. A., & Boylan, J. E. (2001). On the bias of intermittent demand estimates. International journal of production economics, 71(1-3), 457-466. https://doi.org/10.1016/S0925-5273(00)00143-2
Teunter, R., & Sani, B. (2009). On the bias of Croston’s forecasting method. European Journal of Operational Research, 194(1), 177–183. https://doi.org/10.1016/j.ejor.2007.12.001
Willemain, T. R., Smart, C. N., & Schwarz, H. F. (2004). A new approach to forecasting intermittent demand for service parts inventories. International Journal of Forecasting, 20(3), 375–387. https://doi.org/10.1016/S0169-2070(03)00013-X
Yang, Y., Ding, C., Lee, S., Yu, L., & Ma, F. (2021). A modified Teunter-Syntetos-Babai method for intermittent demand forecasting. Journal of Management Science and Engineering, 6(1), 53–63. https://doi.org/10.1016/j.jmse.2021.02.008