Identification of the active principles of black mashua (Tropaeolum tuberosum) and the effect of the production process of a mixed drink of mashua and pineapple
DOI:
https://doi.org/10.26439/ing.ind2021.n40.5150Keywords:
mashua, metabolites, active principles, functional propertiesAbstract
The current trend is to consume natural products with functional properties that reduce the risk of developing several types of diseases. One of the foods that meets these characteristics is mashua (Tropaeolum tuberosum), since it is an important source of bioactive compounds such as anthocyanins, glucosinolates and phenols. This feature is especially distinctive in purple and black mashuas compared to the yellow ones, because they have higher antioxidant capacity and are rich in phenolic compounds. The purpose of this research is to identify the active principles of black mashua, as well as to elaborate a mixed drink of mashua and pineapple (Golden variety) and to study the effect of the production process on the conservation of these active principles in the mixed drink.
Downloads
References
Alkhalidy, H., Wang, Y., y Liu, D. (2018). Dietary flavonoids in the prevention of T2D: an overview. Nutrients, 10(4), 438.
Arias, A. (2002). Biotecnología y metabolitos secundarios en Lepidium peruvianum Chacón “Maca” (tesis para optar el título de biólogo con mención en Genética). Universidad Nacional Mayor de San Marcos.
Ashurst, P. (2005). Introduction. En P. Ashurst (Ed.), Chemistry and technology of soft drinks and fruit juices (2.ª ed.) (pp. 1-13). Oxford: Blackwell Publishing.
Beltrán, A. (2014). Elaboración del tubérculo mashua (Tropaeolum tuberosum) troceada en miel y determinación de la capacidad antioxidante (Tesis de grado). Universidad de Guayaquil, Ecuador.
Betalleluz-Pallardel, I., Chirinos, R., Rogez, H., Pedreschi, R., y Campos, D. (2012). Phenolic compounds from Andean mashua (Tropaeolum tuberosum) tubers display protection against soybean oil oxidation. Food Science and Technology International, 18(3), 271-280.
Campos, D., Chirinos, R., Gálvez Ranilla, L., y Pedreschi, R. (2018). Bioactive potential of Andean fruits, seeds, and tubers. Advances in Food and Nutrition Research, 84, 287-343.
Campos, D., Noratto, G., Chirinos, R., Arbizu, C., Roca, W., y Cisneros Zevallos, L. (2006). Capacidad antioxidante y metabolitos secundarios en cuatro especies de tubérculos andinos: papa nativa (Solanum sp.), Mashua (Tropaeolum tuberosum Ruiz & Pavo’n), oca (Oxalis tuberosa Molina) y olluco (Ullucus tuberosum). Journal of Science of Food and Agricultural, 86, 1481-1488.
Casati, C. B., Baeza, R., Sanchez, V., Catalano, A., López, P., y Zamora, M. C. (2015). Thermal degradation kinetics of monomeric anthocyanins, colour changes and storage effect in elderberry juices. Journal of Berry Research, 5(1), 29-39.
Chen, J. Y., Zhang, H., y Matsunaga, R. (2006). Rapid determination of the main organic acid composition of raw Japanese apricot fruit juices using near-infrared spectroscopy. Journal of Agricultural and Food Chemistry, 54(26), 9652-9657. doi:10.1021/jf061461s
Chirinos, R., Campos, D., Warnier, M., Pedreschi, R., Rees, J., y Larondelle, Y. (2008). Antioxidant properties of mashua (Tropaeolum tuberosum) phenolic extracts against oxidative damage using biological in vitro assays. Food Chemistry, 111, 98-105.
Chirinos, R., Pedreschi, R., Cedano, I., y Campos, D. (2015). Antioxidants from mashua (Tropaeolum tuberosum) control lipid oxidation in sacha inchi (Plukenetia volubilisL.) oil and raw ground pork meat. Journal of Food Processing and Preservation, 39(6), 2612-2619. https://doi.org/10.1111/jfpp.12511
Choi, L. H., y Nielsen, S. S. (2005). The effects of thermal and nonthermal processing methods on apple cider quality and consumer acceptability. Journal of Food Quality, 28(1), 13-29. https://doi.org/10.1111/j.1745-4557.2005.00002.x
Cook, N. C., y Samman, S. (1996). Flavonoids—chemistry, metabolism, cardioprotective effects, and dietary sources. The Journal of nutritional biochemistry, 7(2), 66-76.
Ezoubeiri, A., Gadhi, C. A., Fdil, N., Benharref, A., Jana, M., y Vanhaelen, M. (2005). Isolation and antimicrobial activity of two phenolic compounds from Publicaria odora L. Journal of Ethnopharmacology, 99, 287-292.
Grau, A., Ortega, R., Nieto, C., y Hermann, M. (2003). Mashua (Tropaeolum tuberosum Ruiz & Pav.). International Potato Center. Lima, Perú.
Havelaar, A. H., Brul, S., de Jong, A., de Jonge, R., Zwietering, M. H., y ter Kuile, B. H. (2010). Future challenges to microbial food safety. International Journal of Food Microbiology, 139, 79-94. doi: 10.1016/j.ijfoodmicro.2009.10.015
Hernández, B., y León, J. (1992). Cultivos marginados otra perspectiva de 1942. Organización de las Naciones Unidas para la Agricultura y la Alimentación Roma, pp. 150-151.
Huaccho Huaman C. (2016). Capacidad antioxidante, compuestos fenólicos, carotenoides y antocianinas de 84 cultivares de mashua (Tropaeolum tuberosum Ruiz y Pavón) (tesis para optar el grado de Magister Scientiae en Tecnología de Alimentos). Universidad Nacional Agraria La Molina. Recuperada de http://repositorio.lamolina.edu.pe/handle/UNALM/2844
Kähkönen, M. P., & Heinonen, M. (2003). Antioxidant activity of anthocyanins and their aglycons. Journal of agricultural and food chemistry, 51(3), 628-633. Laboratorio de la EAP de Ingeniería Agroindustrial – Facultad de Ingeniería Química – UNMSM (2017).
Maureen´Di (10 de junio de 2011). Obtención de néctares de fruta [blog]. Recuperado de http://envasescelulosicoschalademaiz.blogspot.com/
Nyambe-Silavwe, H., Villa-Rodríguez, J. A., Ifie, I., Holmes, M., Aydin, E., Jensen, J. M., y Williamson, G. (2015). Inhibition of human α-amylase by dietary polyphenols. Journal of Functional Foods, 19, 723-732.
Pedreschi, R., y Cisneros-Zevallos, L. (2007). Phenolics profiles of Andean purple corn (Zea mays L.). Food Chemistry, 100(3), 956-963.
Proestos, C., Chorianopoulos, N., Nychas, G. J., y Komaitis, M. (2005). RP-HPLC analysis of the phenolic compounds of plant extracts. Investigation of their antioxidant capacity and antimicrobial activity. Journal of agricultural and food chemistry, 53(4), 1190-1195.
Quested, T. E., Cook, P. E., Gorris, L. G. M., y Cole, M. B. (2010). Trends in technology, trade and consumption likely to impact on microbial food safety. International Journal of Food Microbiology, 139, S29-S42. https://doi.org/10.1016/j.ijfoodmicro.2010.01.043
Rosenberg, R., Jenkinsa, D., y Diamandis, E. (2002). Flavonoids and steroid hormonedependent cancers. Journal of Chromatography B, 777, 219-232.
Tan, Y., y Chang, S. K. C. (2017). Digestive enzyme inhibition activity of the phenolic substances in selected fruits, vegetables and tea as compared to black legumes. Journal of Functional Foods, 38, 644–655.
Tsao, R., y Deng, Z. (2004). Separation procedures for naturally occurring antioxidant phytochemicals. Journal of chromatography B, 812(1-2), 85-99.
Wang, H., Cao, G., y Prior, R. L. (1997). Oxygen radical absorbing capacity of anthocyanins. Journal of Agricultural and Food Chemistry, 45(2), 304-309.
Xu, Y., Guo, Y., Gao, Y., Niu, X., Wang, L., Li, X., Chen, H., Yu, Z., y Yang, Y. (2018). Seperation, characterization and inhibition on α-glucosidase, α-amylase and glycation of a polysaccharide from blackcurrant fruits, LWT. Food Science and Technology, 93, 16-23.
Zamora-Ros, R., Forouhi, N. G., Sharp, S. J., Gonzalez, C. A., Buijsse, B., Guevara, M., ... y Wareham, N. J. (2014). Dietary intakes of individual flavanols and flavonols are inversely associated with incident type 2 diabetes in European populations. The Journal of nutrition, 144(3), 335-343.
Zapatero Alba, A. (2006). El trasfondo económico, financiero y jurídico-legal de los procesos de fusión de sociedades mercantiles (tesis para optar el título de abogado). Universidad de Lima.
Zhang, B., Deng, Z., Ramdath, D. D., Tang, Y., Chen, P. X., Liu, R., Liu, Q., y Tsao, R. (2015). Phenolic profiles of 20 Canadian lentil cultivars and their contribution to antioxidant activity and inhibitory effects on α-glucosidase and pancreatic lipase. Food Chemistry, 172, 862-872.
