Sales Analysis using Complex Networks: Communities and Centrality of Items
Keywords:
Market basket analysis, Complex networks, Cell phones, SalesAbstract
DOI: https://doi.org/10.26439/ing.ind2020.n038.4820
Sales in the cell phone and accessories area of a department store are analyzed with a complex network approach. Using measures of centrality and item grouping (communities), purchase ordering is shown, and the importance of each product is quantified. Sales are ordered by forming ‘communities’ around the cell phone chips. Based on the results, it can be concluded that cell phones are the most significant items of each community.
Downloads
References
Ayse Nur, S. y Ayvazb, B. (2018). Determination of association rules with market basket analysis: an application in the retail sector. Southeast Europe Journal of Soft Computing, 7(1), 10-19. doi:10.21533/scjournal.v7i1.149
Barabási, A. L. (2016). Network Science. Cambridge: Cambridge University Press.
Barthelemy, M. (2011). Spatial networks. Physics Reports, 499(1-3), 1-101. doi:10.1016/j.physrep.2010.11.002
Freeman, L. (1977). A set of measures of centrality based on betweenness. Sociometry, 40(1), 35-41. doi:10.2307/3033543
Fruchterman, T., y Reingold, E. (1991). Graph drawing by Force-directed Placement. Software: Practice and Experience, 21(11), 1129-1164. doi:10.1002/spe.4380211102
Gephi (2010). Gephi Tutorial Quick Start. Recuperado de
<a href="https://gephi.org/tutorials/gephi-tutorial-quick_start.pdf" target="_blank">https://gephi.org/tutorials/gephi-tutorial-quick_start.pdf</a>
Huang, Z., Zeng, D., y Chen, H. (2007). Analyzing consumer-product graphs: empirical findings and applications in recommender systems. Management Science, 53(7), 1146-1154. doi:0.1287/mnsc.1060.0619
Kaur, M., y Kang, S. (2016). Market basket analysis: identify the changing trends of market data using association rule mining. Procedia Computer Science, 1(85), 78-85. doi:10.1016/j.procs.2016.05.180
Kim, H., Kim, J., y Chen, Q. (2012). A product network analysis for extending the market basket analysis. Expert Systems with Applications, 39(8), 7403-7410. doi:10.1016/j.eswa.2012.01.066
Pennacchioli, D., Coscia, M., Rinzivillo, S., Gianotti, F., y Pedreschi, D. (2014). The retail market as a complex system. EPJ Data Science, 3(33), 1-27. doi:10.1140/epjds/s13688-014-0033-x
Raeder, T., y Chawla, N. V. (2011). Market basket analysis with networks. Social Network Analysis and Mining, 1(2), 97-113. doi:10.1007/s13278-010-0003-7
Sha, Z., Huang, Y., Fu, J., Wang, M., Fu, Y., Contractor, N., y Chen, W. (2018). A network-based approach to modeling and predicting product co-consideration relations. Complexity, 2018, 1-13. doi:10.1155/2018/2753638
Valle, M. A., Ruz, G. A., y Morrás, R. (2018). Market basket analysis: complementing association rules with minimum spanning trees. Expert Systems with Applications, 97(1), 146-162. doi:10.1016/j.eswa.2017.12.028
Videla-Cavieres, I., y Ríos, S. (2014). Extending market basket analysis with graph mining. Expert Systems with Applications, 41 (4), 1928-1936. doi:10.1016/j.eswa.2013.08.088
Wan, M., Chen, W., Fu, Y., y Yang, Y. (2015). Analyzing and predicting heterogeneous customer preferences in China’s auto-market using choice modeling and network analysis. International Journal of Materials and Manufacturing, 8(3), 1-10. doi:10.4271/2015-01-0468
Zhao, T., McAuley, J., Li, M., y King, I. (2017). Improving recommendation accuracy using networks of substitutable and complementary products. En 2017 International Joint Conference on Neural Networks (IJCNN) (pp. 3649-3655). Anchorage, AK: IEEE. doi:10.1109/IJCNN.2017.7966315
