Inteligência Artificial na Transcrição de Entrevistas

Autores

DOI:

https://doi.org/10.26439/contratexto2024.n41.6750

Palavras-chave:

transcrição, inteligência artificial, entrevistas, automatização, interação humano-computador

Resumo

Entrevistas, fundamentais para o exercício jornalístico e pesquisa qualitativa, capturam o significado profundo do pensamento humano. Em 2023, ferramentas de inteligência artificial (IA) se popularizaram, incluindo seu uso na gravação, transcrição e legendagem de discursos. O objetivo do estudo é identificar a IA mais adequada para transcrever gravações em espanhol, priorizando a completude das tarefas, eficácia e eficiência. A IA selecionada será aplicada a um corpus de 450 entrevistas curtas, que serão posteriormente codificadas e analisadas quanto ao conteúdo. O artigo foca em quatro ferramentas de transcrição com IA em espanhol: Office 365 (Word) Transcribe, Amazon Transcribe, Notta e Whisper. A tecnologia permite aproveitar a riqueza da gravação original sem a intervenção, e possível modificação, da pessoa ou assistente virtual que a transcreve. Os resultados destacam a rapidez da transcrição e a capacidade das IAs em processar e hospedar documentos escritos online. Em relação às possibilidades de interação com o texto, observa-se o papel fundamental das equipes de pesquisa na compreensão profunda e análise de conteúdo, com o suporte proporcionado pelas IAs nas tarefas de transcrição.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Angermuller, J., Maingueneau, D., & Wodak, R. (2014). The Discourse Studies Reader: Main currents in theory and analysis. John Benjamins Publishing Company. http://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=800889&lang=es&site=ehost-live

Benkerzaz, S., Elmir, Y., & Dennai, A. (2019). A Study on Automatic Speech Recognition. Journal of Information Technology Review, 10(3), 77-85. https://doi.org/10.6025/jitr/2019/10/3/77-85

Berkemer, R., & Grottke, M. (2023). Learning Algorithms. What is Artificial Intelligence Really Capable of? En P. Klimczak & C. Petersen (Eds.), AI – Limits and Prospects of Artificial Intelligence (pp. 9-42). Transcript Verlag. https://doi.org/doi:10.1515/9783839457320-003

Blecua, A. (1983). Manual de crítica textual. Castalia.

Castells, M. (2002). The rise of the network society (vol. 1). Blackwell.

Claeser, D., Pritzkau, A., Schade, U., & Winandy, S. (2023). Let’s Fool That Stupid AI: Adversarial Attacks against Text Processing AI. En P. Klimczak & C. Petersen (Eds.), AI – Limits and Prospects of Artificial Intelligence (pp. 267-284). Transcript Verlag. https://doi.org/10.1515/9783839457320-012

Cornejo, I., & Rufer, M. (2020). Horizontalidad: hacia una crítica de la metodología. CLACSO / CALAS. https://biblioteca.clacso.edu.ar/clacso/se/20201023034518/Horizontalidad.pdf

Covella, G. J. (2005). Medición y evaluación de calidad en uso de aplicaciones web [Tesis de maestría, Universidad Nacional de La Plata]. Repositorio Institucional de la UNLP. https://sedici.unlp.edu.ar/handle/10915/4082

Creswell, J. W. (2013). Qualitative inquiry and research design: choosing among five approaches. SAGE.

García-Prieto, V., & Figuereo-Benítez, J. C. (2022). Accesibilidad de los contenidos televisivos para personas con discapacidad: limitaciones y propuestas de mejora. Contratexto, (38), 289-311. https://doi.org/10.26439/contratexto2022.n038.5779

Girón-García, C., & Esbrí-Blasco, M. (2019). Analysing the Digital World and its Metaphoricity: Cybergenres and Cybermetaphors in the 21st Century. Cultura, Lenguaje y Representación, 22, 21-35. https://doi.org/10.6035/CLR.2019.22.2

Greco, L., Galatolo, R., Horlacher, A. S., Piccoli, V., Ticca, A. C., & Ursi, B. (2019). Some theoretical and methodological challenges of transcribing touch in talk-in-interaction. Social Interaction. Video-Based Studies of Human Sociality,2(1). https://doi.org/10.7146/si.v2i1.113957

Kreuz, R. J., & Riordan, M. A. (2018). The art of transcription: Systems and methodological issues. In A. H. Jucker, K. P. Schneider & W. Bublitz (Eds.), Methods in Pragmatics (pp. 95-120). De Gruyter Mouton. https://doi.org/10.1515/9783110424928-003

Kvale, S. (2011). Las entrevistas en investigación cualitativa. Morata.

Ligo, A. K., Rand, K., Bassett, J., Galaitsi, S. E., Trump, B. D., Jayabalasingham, B., Collins, T., & Linkov, I. (2021). Comparing the Emergence of Technical and Social Sciences Research in Artificial Intelligence. Front. Comput. Sci., 3, 1-13. https://doi.org/10.3389/fcomp.2021.653235

Lopezosa, C., Codina, L., & Boté-Vericad, J.-J. (2023). Testeando ATLAS.ti con OpenAI: hacia un nuevo paradigma para el análisis cualitativo de entrevistas con inteligencia artificial. Universitat Pompeu Fabra, Departamento de Comunicación. https://repositori.upf.edu/handle/10230/56449

Lv, T., Yan, P., & He, W. (2019). On Massive JSON Data Model and Schema. Journal of Physics: Conference Series, 1302(2), 1-4. https://doi.org/10.1088/1742-6596/1302/2/022031

McMullin, C. (2023). Transcription and Qualitative Methods: Implications for Third Sector

Research. Voluntas, 34, 140-153. https://doi.org/10.1007/s11266-021-00400-3

Nagaraj, P., Muneeswaran, V., Rohith, B., Sai Vasanth, B., Veda Varshith Reddy, G., & Koushik Teja, A. (23-25 de enero de 2023). Automated YouTube Video Transcription to Summarized Text Using Natural Language Processing. 2023 International Conference on Computer Communication and Informatics (ICCCI). Institute of Electrical and Electronics Engineers, Coimbatore, India. https://doi.org/10.1109/ICCCI56745.2023.10128375

Nagy, N. (2014). Chapter 12: Transcription. En R. J. Podesva & D. Sharma (Eds.), Research Methods in Linguistics (pp. 235-256). Cambridge University Press. https://doi.org/10.1017/CBO9781139013734

O’Brien, S. (2020). Translation, human-computer interaction and cognition. Routledge.

O’Shaughnessy, D. (2024). Trends and developments in automatic speech recognition research.

Computer Speech & Language, 83, 1-33. https://doi.org/10.1016/j.csl.2023.101538

Ossa, F. (1993). Historia de la escritura. Planeta.

Point, S., & Baruch, Y. (2023). (Re)thinking transcription strategies: Current challenges and future research directions. Scandinavian Journal of Management, 39(2), 1-10. https://doi.org/10.1016/j.scaman.2023.101272

Reales, L., Robalino, G., Peñafiel, A., Cárdenas, J., & Cantuña-Vallejo, P. (2022). El muestreo intencional no probabilístico: herramienta de investigación científica en carreras de Ciencias de la Salud. Universidad & Sociedad, 14(S5), 681-691. https://rus.ucf.edu.cu/index.php/rus/article/view/3338

Saldaña, J. (2016). The coding manual for qualitative researchers (3.a ed.). SAGE.

Seifert, I., Bürger, M., Wangler, L., Christmann-Budian, S., Rohde, M., Gabriel, P., & Zinke, G. (2018). Potential of Artificial Intelligence in Germany’s Producing Sector. PaiCE Scientific Assistance. https://www.digitale-technologien.de/DT/Redaktion/EN/Downloads/Publikation/PAiCE_AI_Study.pdf?__blob=publicationFile&v=1

Silverman, D. (2013). Doing qualitative research. SAGE.

Waddell, K. (24 de agosto de 2022). Lost in Transcription: Auto-Captions Often Fall Short on Zoom, Facebook, Google Meet, and YouTube. Consumer Reports. https://www.consumerreports.org/disability-rights/auto-captions-often-fall-short-on-zoom-facebook-and-others-a9742392879/

Wagner, J. (2022). Conversation Analysis: Transcriptions and Data. En C. A. Chapelle (Ed.), The Concise Encyclopedia of Applied Linguistics (pp. 296-303). Wiley.

Publicado

2024-05-31

Como Citar

Yépez-Reyes, V., & Cruz-Silva, J. (2024). Inteligência Artificial na Transcrição de Entrevistas. Contratexto, 41, 183-202. https://doi.org/10.26439/contratexto2024.n41.6750