Where do buildings go when they die?

Authors

DOI:

https://doi.org/10.26439/limaq2021.n008.5550

Keywords:

useful life, edification, circularity, biodegradable architecture, disassemble

Abstract

This article proposes a circular perspective to understand architecture, which means that the design process must keep in mind the reuse strategies at the end of the life cycle, in order to avoid its “death”: an inefficient demolition of the building. We approach the problem from two different viewpoints: biodegradable architecture, in which the natural components follow the natural flow and return to the system by their degradation into nature; and design for disassembly, in which the building’s components are dismantled in order to be reused. The article argues that it is possible to explore new ways of pursuing sustainability in the built environment by opposing these two perspectives.

Downloads

Download data is not yet available.

Author Biographies

  • Anael Rodríguez Ferrari, Universidad de Lima

    Master in Higher Education from the Southern Scientific University, from which he graduated with honors with an investigation on the creative thinking of the Architecture student. Architect by the Ricardo Palma University. Co-founder of Estudio 915, a firm specialized in the development of housing and commercial projects, with a great sense of the environmental condition, as well as the social role of architecture. Since 2011 he has worked as a teacher at the University of Lima and has been part of the Research Institute of said house of studies, as a member of the team of the research project "The public space inside the Villa El Salvador macro-block."

  • Carolina Neuhaus Buzaglo, Universidad de Lima

    Graduated from the University of Lima. He completed his undergraduate thesis with the highest grade, outstanding cum laude, in which he researched and projected based on the needs of non-hearing people. He has practiced in different architecture studios and recently joined the faculty of the University of Lima in the Architectural Design Workshops. In recent years he has participated in different activities, such as the Archiprix 2021 edition and the CAP Lima conference cycle on the best end-of-degree projects.

References

Aircrew Lifestyle. (s. f.). Casa del Oidor y Catedral de Lima [Fotografía]. http://aircrewlifestyle.es/48-horas-en-lima-capital-de-contrastes-y-continua-evolucion/casa-del-oidor-y-catedral-de-lima/

Angen, C. (2013). Concept and Technique: How Traditional Japanese Architecture Can Contribute to Contemporary Sustainable Design Practices. Environmental Studies Honors Papers, 10. https://digitalcommons.conncoll.edu/cgi/viewcontent.cgi?article=1008&context=envirohp

Berque, A. (2009). El pensamiento paisajero. Biblioteca Nueva.

Biomimicry Institute. (2021). Understanding Biomimicry. https://biomimicry.org/what-is-biomimicry/

Boyer, M. (1 de febrero del 2017). Philip Ross Molds Fast-Growing Fungi Into Mushroom Building Bricks That Are Stronger than Concrete. INHABITAT. https://inhabitat.com/phillip-ross-molds-fast-growing-fungi-into-mushroombuilding-bricks-that-are-stronger-than-concrete/

Brand, S. (1994). How Buildings Learn. The Penguin Group.

Burga, J. (2010). Arquitectura vernácula peruana. Un análisis tipológico. Colegio de Arquitectos del Perú.

Caradonio, J. [@jackiecaradonio]. (26 de junio del 2014a). Private preview of this summer’s Warm-Up installation at @MoMAPS1 #HyFi #theliving [Fotografía adjunta]. Twitter. https://twitter.com/jackiecaradonio/status/482365355013074944/photo/1

Caradonio, J. [@jackiecaradonio]. (26 de junio del 2014b). The cathedral-like interiors of #HyFi @MoMAPS1. #theliving [Fotografía adjunta]. Twitter. https://pbs.twimg.com/media/BrGxXX5CIAA_fXP?format=jpg&name=900x900

Carles i Font, J. (2006). Características de los hongos. El mundo de los hongos. https://usuaris.tinet.cat/fongs/caractercas.htm

Casa comunal vikinga. (31 de julio del 2015). La Comunidad del Roble. https://lacomunidaddelroble.wordpress.com/2015/07/31/casa-comunalvikinga-longhouse-langhus/

Chau, C., Xu, J., Leung, T., y Ng, W. (2016). Evaluation of the Impacts of End-of-Life Management Strategies for Deconstruction of a High-rise Concrete Framed Office Building. Applied Energy, 185(Part 2), 1595-1603.

Chica, J., Apraiz, I., Elguezabal, P., Rips, M., Sánchez, V., y Tellado, B. (2010). KUBIK: Open Building Approach for the Construction of an Unique Experimental Facility Aimed to Improve Energy Efficiency in Buildings. En J. Chica, P. Elguezabal, S. Meno y A. Amundarain (Eds.), 16th International Conference on “Open and Sustainable Building” (pp. 39-50). Tecnalia.

Crowther, P. (1999). Design for Disassembly: An Architectural Strategy for Sustainability. En M. Ganis (Ed.), Design for Sustainability (pp. 27-33). Queensland University of Technology

Da Silva, T. (1998). Predicción de la vida útil de forjados unidireccionales de hormigón mediante modelos matemáticos de deterioro. Escuela Técnica de Ingenieros de Caminos, Canales y Puertos de Barcelona.

Decreto Supremo 015-2015-Vivienda [Ministerio de Vivienda]. Código Técnico de Construcción Sostenible. 28 de agosto del 2015.

Denis, F., Vandervaeren, C., y De Temmerman, N. (2018). Using Network Analysis and BIM to Quantify the Impact of Design for Disassembly. Buildings, 8(113), 2-22. doi:10.3390/buildings8080113

-- PARIS -- La Tour Eiffel [Fotografía]. (ca. 1907-1914). https://library-artstor-org.ezproxy.ulima.edu.pe/asset/SS35428_35428_20081367

Directiva 002-2014-EF/51.01 [Ministerio de Economía y Finanzas]. Metodología para la modificación de la vida útil de los edificios. Revaluación de edificios y terrenos, identificación e incorporación de edificios y terrenos de administración funcional y reclasificación de propiedades de inversión en las entidades gubernamentales. 19 de mayo del 2014.

Dodoo, A., Gustavsson, L., y Sathre, R. (2009). Carbon Implications of End-of-Life Management of Building Materials. Resources, Conservation and Recycling, 53(5), 276-286.

Durmisevic, E. (2010). Green Design and Assembly of Buildings and Systems. VDM Verlag Dr. Müller.

Evanson, D. (15 de marzo del 2018). Could These Seven Student Inventions Be the Next Big Thing? Imperial College London. https://www.imperial.ac.uk/news/185335/could-these-seven-student-inventions-next/

Fay, R., Treloar, G., e Iyer-Raniga, U. (2000). Life-Cycle Energy Analysis of Buildings: a Case Study. Building Research & Information, 28(1), 31-41.

Gardner, H., García, J., Hasik, V., Olinzock, M., Banawi, A. y Bilek, M. (2019). Materials Life Cycle Assessment of a Living Building. Procedia CIRP, 80, 458-463.

Guy, B., Ciarimboli, N., y Hendrickson, K. (2008). DfD. Design for Disassembly in the Built Environment: A Guide to Closed-Lood Design and Building. Hamer Center.

Jones, W. (14 de marzo del 2017). Shibam - Skyscraper Fortress Built from Mud. Cfile.Daily. https://cfileonline.org/architecture-shibam-skyscraper-fortressbuilt-from-mud/

Karimjee, M. (2014). Biodegradable Architecture, Finite Construction for Endless Futures [Tesis de maestría no publicada]. Azrieli School of Architecture and Urbanism.

Kikutake, K. (1995). On the Notion of Replaceability. World Architecture, 33, 26-27.

Kotler, P., y Armstrong, G. (2003). Fundamentos de marketing. Pearson Educación.

Kwak, M., Hong, Y., y Cho, N. (2009). Eco-Architecture Analysis for End-of-Life Decision Making. International Journal of Production Research, 47(22), 6233-6259.

Lamb, C., Hair, J., y McDaniel, C. (2006). Fundamentos de marketing. Thomson.

Lavagna, M., Arena, M., Giovanni, D., y Zanchi, M. (2014). Le strutture temporanee per Expo Milano 2015: valutazione ambientale e soluzioni per la gestione del fine vita. Techne, Journal of Technology for Architecture and Environment, 7, 171-177.

León, J. (26 de agosto del 2017). En Lima se generan 19 mil toneladas de desmonte al día y el 70 % va al mar o ríos. El Comercio. https://elcomercio.pe/lima/ sucesos/lima-generan-19-mil-toneladas-desmonte-dia-70-mar-rios-noticia-453274-noticia/

Miceli, A. (2016). Arquitectura sustentable. Más que una nueva tendencia, una necesidad. Ediciones de la U.

Ministerio del Ambiente. (2012a). Gestión ambiental de residuos sólidos en el Perú. XV Reunión Anual de Gestión de Residuos Sólidos. Edición del Autor

Ministerio del Ambiente. (2012b). Inventario Nacional de Gases de Efecto Invernadero (INGEI). Edición del Autor.

Ministerio del Ambiente. (2015). Residuos sólidos. Estadísticas. https://sinia.minam.gob.pe/temas/residuos-solidos/estadisticas/

Norma EM.110: Confort Térmico y Lumínico con Eficiencia Energética. (13 de mayo del 2014). Diario oficial El Peruano, pp. 523069-523118. https://cdn-web. construccion.org/normas/rne2012/rne2006/files/titulo3/04_EM/DS006-2014_EM.110.pdf

Organización Internacional de Normalización. (2006). Gestión ambiental. Análisis del ciclo de vida. Principios y marco de referencia (ISO 14040). https://www.iso.org/obp/ui#iso:std:iso:14040:ed-2:v1:es

Oshima, K. (2012). Metabolist Trajectories. Log, 24, 28-32.

Pallasmaa, J. (2020). Animales arquitectos. Gustavo Gili.

Paxton, J. (1850-1851). London: Crystal Palace Gen [Great Exhibition of 1851]. https://library-artstor-org.ezproxy.ulima.edu.pe/asset/ARTSTOR_103_41822000006625

Pérez, L. (2010). Vida útil residual de estructuras de hormigón armado afectadas por corrosión. Universidad Politécnica de Madrid.

Petrovic, B., Myhren, J., Zhang, X., Wallhagen, M., y Eriksson, O. (2019). Life Cycle Assessment of Building Materials for a Single-Family House in Sweden. Energy Procedia, 158, 3547-3552.

Piano, R. (1977). París: Pompidou Center. https://library-artstor-org.ezproxy.ulima.edu.pe/asset/ARTSTOR_103_41822003437694

Real Academia Española. (s. f.). Bio-. En Diccionario de la Real Academia Española. Recuperado el 9 de junio del 2019 de https://dle.rae.es/bio-?m=form

Real Academia Española. (s. f.). Biodegradable. En Diccionario de la Real Academia Española. Recuperado el 9 de junio del 2019 de https://dle.rae.es/biodegradable

Real Academia Española. (s. f.). Degradable. En Diccionario de la Real Academia Española. Recuperado el 9 de junio del 2019 de https://dle.rae.es/degradable?m=form

Ros, C. (20 de marzo del 2020). Arquitectura animal. Arquitectura y Diseño. https://www.arquitecturaydiseno.es/pasion-eco/libro-para-aprender-comoanimales-viven-casas-muy-buena-arquitectura_3864

Salama, W. (2017). Design of Concrete Buildings for Disassembly: An Explorative Review. International Journal of Sustainable Built Environment, 6(2), 617-635.

Sassi, P. (2006). Biodegradable Building. En C. A. Brebbia (Ed.), Design and Nature III (pp. 91-102). WIT, Transactions on Ecology and the Environment, vol. 87.

Syed, S. (28 de septiembre del 2017). Este pabellón “vive y muere” para hacer una crítica a la sostenibilidad. Archdaily. https://www.archdaily.pe/pe/880342/este-pabellon-vive-y-muere-para-hacer-una-critica-a-la-sostenibilidad

Thiébat, F. (2013). Progettazione sostenibile nel ciclo di vita. Techne, Journal of Technology for Architecture and Environment, 5, 177-183.

Thorns, E. (29 de abril del 2018a). ¿Próxima crisis de la sustentabilidad? Estamos usando tanta arena que pronto podría acabarse. Archdaily. https://www.archdaily.pe/pe/892939/la-proxima-crisis-de-sustentabilidad-los-seres-humanosestan-usando-tanta-arena-que-de-hecho-podriamos-extinguirnos

Thorns, E. (27 de mayo del 2018b). 8 materiales biodegradables que la industria de la construcción necesita conocer. Archdaily. https://www.archdaily.co/co/893955/8-materiales-biodegradables-que-la-industria-de-laconstruccion-necesita-conocer

Published

2021-12-14

Issue

Section

Sostenibilidad

How to Cite

Rodríguez Ferrari, A., & Neuhaus Buzaglo, C. (2021). Where do buildings go when they die?. Limaq, 8(008), 29-52. https://doi.org/10.26439/limaq2021.n008.5550