Ethics and Algorithmic Governance in the Financial Sector: A Systematic Review of Principles, Governance, and Implementation Gaps

Authors

DOI:

https://doi.org/10.26439/interfases2025.n022.8230

Keywords:

norms , regulations, machine learning, predictive models, adaptive algorithms

Abstract

This article aims to identify the fundamental ethical principles, implemented governance mechanisms, and gaps between theory and practice in the use of algorithms within the banking sector. To this end, a systematic literature review was conducted following the protocol established by Kitchenham and Charters (2007), through searches in four academic databases (IEEE Xplore, ACM Digital Library, SpringerLink, and Scopus) using structured search strings in English and Spanish. After applying rigorous inclusion and exclusion criteria, 28 primary studies published between 2020 and 2025 were selected and analyzed. The findings reveal fundamental tensions between social justice and technical efficiency, as well as persistent challenges in terms of transparency, fairness, and privacy. Regulatory, institutional, and technological strategies are proposed to strengthen the ethical deployment of algorithmic systems, emphasizing human oversight, traceability, and user experience. This research contributes to establishing a framework for advancing toward more responsible, legitimate, and inclusive artificial intelligence in banking.

Downloads

Download data is not yet available.

References

Abbas, S. K. (2025). Lending by algorithm: Fair or flawed? An information-theoretic view of credit decision pipelines. SN Computer Science, 6, 679. https://doi.org/10.1007/s42979-025-04222-8

Abdurashidova, M. S., & Balbaa, M. E. (2024). Artificial intelligence in the banking sector in Uzbekistan: Exploring the impacts and opportunities. En Proceedings of the 7th International Conference on Future Networks and Distributed Systems (ICFNDS ‘23) (pp. 51-57). https://doi.org/10.1145/3644713.3644721

Afrin, S., Roksana, S., & Akram, R. (2025). AI-enhanced robotic process automation: A review of intelligent automation innovations. IEEE Access, 13, 173-197. https://doi.org/10.1109/ACCESS.2024.3513279

Akre, P. D., Pacharaney, U., & Siraskar, W. (2024). Smart finance: An overview of artificial intelligence integration in FinTech. En 2024 2nd DMIHER International Conference on Artificial Intelligence in Healthcare, Education and Industry (IDICAIEI) (pp. 1-6). https://doi.org/10.1109/IDICAIEI61867.2024.10842818

AL-Ghuribi, S. M., Ahmed, A. A., Ibraheem, A. S., Hasan, M. K., & Islam, S. (2025). Navigating the ethical landscape of artificial intelligence: A comprehensive review. International Journal of Computing and Digital Systems, 15(7), 1038-1043. https://hdl.handle.net/20.500.14536/5762

Batiz-Lazo, B., Efthymiou, L., & Davies, K. (2022). The spread of artificial intelligence and its impact on employment: Evidence from the banking and accounting sectors. En A. Thrassou, D. Vrontis, L. Efthymiou, Y. Weber, S. M. R. Shams & E. Tsoukatos (Eds.), Business advancement through technology, volume II (pp. 127-145). Palgrave Macmillan. https://doi.org/10.1007/978-3-031-07765-4_7

Cath, C. (2018). Governing artificial intelligence: Ethical, legal and technical opportunities and challenges. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2133), 20180080. https://doi.org/10.1098/rsta.2018.0080

Ibrahim, S. M., Alshraideh, M. A., Leiner, M., Aldajani, I. M., & Ouarda, B. (2024). Artificial intelligence ethics: Ethical consideration and regulations from theory to practice. IAES International Journal of Artificial Intelligence, 13(3), 3703-3714. https://doi.org/10.11591/ijai.v13.i3.pp3703-3714

Ilari, L., Rafaiani, G., Baldi, M., & Giovanola, B. (2023). Ethical biases in machine learning-based filtering of internet communications. En 2023 IEEE International Symposium on Ethics in Engineering, Science, and Technology (ETHICS) (pp. 1-9). https://doi.org/10.1109/ETHICS57328.2023.10154975

Jantunen, M., Meyes, R., Kurchyna, V., Meisen, T., Abrahamsson, P., & Mohanani, R. (2024). Researchers’ concerns on artificial intelligence ethics: Results from a scenario-based survey. En Proceedings of the 7th ACM/IEEE International Workshop on Software-intensive Business (IWSiB ‘24) (pp. 24-31). https://doi.org/10.1145/3643690.3648238

Jobin, A., Lenca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. Nature Machine Intelligence, 1(9), 389-399. https://doi.org/10.1038/s42256-019-0088-2

Kahyaoglu, H. (2021). The impact of artificial intelligence on central banking and monetary policies. En S. Bozkuş Kahyaoğlu (Ed.), The impact of artificial intelligence on governance, economics and finance, volume I (pp. 89-108). Springer. https://doi.org/10.1007/978-981-33-6811-8_5

Kaponis, A., & Maragoudakis, M. (2022). Data analysis in digital marketing using machine learning and artificial intelligence techniques, ethical and legal dimensions, state of the art. En Proceedings of the 12th Hellenic Conference on Artificial Intelligence (SETN ‘22) (pp. 1-9). https://doi.org/10.1145/3549737.3549756

Kasinidou, M., Kleanthous, S., & Otterbacher, J. (2024). “Artificial intelligence is a very broad term”: How educators perceive artificial intelligence? En Proceedings of the 2024 International Conference on Information Technology for Social Good (GoodIT ‘24) (pp. 315-323). https://doi.org/10.1145/3677525.3678677

Kitchenham, B., & Charters, S. (2007). Guidelines for performing systematic literature reviews in software engineering. Keele University & Durham University Joint Report. https://www.researchgate.net/publication/302924724_Guidelines_for_performing_Systematic_Literature_Reviews_in_Software_Engineering

Ley 31814 del 2023. Ley que promueve el uso de la inteligencia artificial en favor del desarrollo económico y social del país. 5 de julio del 2023. Diario Oficial El Peruano. https://cdn.www.gob.pe/uploads/document/file/5038703/ley-que-promueve-el-uso-de-la-inteligencia-artificial-en-fav-ley-n-31814.pdf?v=1692895308

Liu, H., Jafri, M. A. H., Xu, S., & Shahzad, M. F. (2025). The impact of artificial intelligence on consumers’ willingness to use CBDCs: Evidence from the Chinese banking sector. Humanities and Social Sciences Communications, 12, 834. https://doi.org/10.1057/s41599-025-05067-5

Lopes, J. M., Massano-Cardoso, I., & Pedrosa, L. (2025). The role of artificial intelligence in mobile banking: Decoding Portuguese consumers’ perceptions and intentions to engage. Future Business Journal, 11, 125. https://doi.org/10.1186/s43093-025-00510-0

Mishra, A. K., Tyagi, A. K., Richa, & Patra, S. R. (2024). Introduction to machine learning and artificial intelligence in banking and finance. En M. Irfan, K. Muhammad, N. Naifar & M. A. Khan (Eds.), Applications of blockchain technology and artificial intelligence. Financial mathematics and fintech (pp. 230-290). Springer. https://doi.org/10.1007/978-3-031-47324-1_14

Nathim, K. W., Hameed, N. A., Salih, S. A., Taher, N. A., Salman, H. M., & Chornomordenko, D. (2024). Ethical AI with balancing bias mitigation and fairness in machine learning models. En 2024 36th Conference of Open Innovations Association (FRUCT) (pp. 797-807). https://doi.org/10.23919/FRUCT64283.2024.10749873

Panda, M., Hossain, M. M., Puri, R., & Ahmad, A. (2025). Artificial intelligence in action: Shaping the future of public sector. Digital Policy, Regulation and Governance, 27(6), 668-686. https://doi.org/10.1108/DPRG-10-2024-0272

Ponmalar, S., Kumar, K. N., Balaji, R. V., Rohith, T., & Kaarthick, A. K. N. (2025). Ethical challenges and bias in real-world AI: A fairness-oriented approach to resume screening systems. En Proceedings of the 3rd International Conference on Augmented Intelligence and Sustainable Systems (ICAISS 2025). IEEE. https://doi.org/10.1109/ICAISS61471.2025.11042179

Porwal, P. D. (2025). Ethics and laws: Governing generative AI’s role in financial systems. En P. R. Chelliah, P. K. Dutta, A. Kumar, E. D. R. Santibanez Gonzalez, M. Mittal & S. Gupta (Eds.), Generative artificial intelligence in finance: Large language models, interfaces, and industry use cases to transform accounting and finance processes (pp. 283-298). Wiley. https://doi.org/10.1002/9781394271078.ch15

Purwar, M., Deka, U., Raj, H., & Ritu. (2024). Data-driven insights: Leveraging analytics for predictive modeling in finance. En 2024 4th International Conference on Technological Advancements in Computational Sciences (ICTACS) (pp. 687-693). IEEE Xplore. https://doi.org/10.1109/ICTACS62700.2024.10841301

Ratzan, J., & Rahman, N. (2024). Measuring responsible artificial intelligence (RAI) in banking: A valid and reliable instrument. AI & Ethics, 4, 1279-1297. https://doi.org/10.1007/s43681-023-00321-5

Rayo, S., Lara, J., & Camino, D. (2010). Un modelo de credit scoring para instituciones de microfinanzas en el marco de Basilea II. Journal of Economics, Finance and Administrative Science, 15(28), 89-124. http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S2077-18862010000100005

Resolución SBS 00053-2023 [Superintendencia de Banca, Seguros y AFP]. Por la cual se aprueba el Reglamento de Gestión de Riesgos de Modelo. 6 de enero del 2023. https://intranet2.sbs.gob.pe/dv_int_cn/2240/v1.0/Adjuntos/0053-2023.R.pdf

Resolución SBS 14354-2009 [Superintendencia de Banca, Seguros y AFP]. Por la cual se aprueba el Reglamento para el Requerimiento de Patrimonio Efectivo por Riesgo de Crédito y se modifica el manual de contabilidad para las empresas del sistema financiero. 30 de octubre del 2009. https://www.sbs.gob.pe/Portals/0/jer/Auto_Nuevas_Empresas/Sistema_Financiero/9.%20Reg.%20de%20Requerimiento%20de%20Patrimonio%20Efectivo%20por%20Riesgo%20de%20Cr%C3%A9dito_Res.%20SBS%20N%C2%B0%2014354-2009.pdf

Schedl, M., Gómez, E., & Lex, E. (2022). Retrieval and recommendation systems at the crossroads of artificial intelligence, ethics, and regulation. En E. Amigo, P. Castells, J. Gonzalo, B. Carterette, J. S. Culpepper & G. Kazai (Eds.), Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ‘22) (pp. 3420-3424). https://doi.org/10.1145/3477495.3532683

Sharma, S., & Preet, K. (2025). Cutting-edge AI applications in banking: Trends, challenges and future directions. En 2025 12th International Conference on Computing for Sustainable Global Development (INDIACom) (pp. 1-6). IEEE Xplore. https://doi.org/10.23919/INDIACom66777.2025.11115186

Singh, L., Joshi, K. A., Koranga, R. S., Pant, S. C., & Mathur, P. (2024). Artificial intelligence in the legal profession: A review on its transformative potential and ethical challenges. En D. Goyal, A. Kumar, D. Singh, M. Paprzycki, B. B. Gupta & U. P. Singh (Eds.), Proceedings of the 5th International Conference on Information Management & Machine Intelligence (ICIMMI ‘23) (pp. 1-8). Association for Computing Machinery https://doi.org/10.1145/3647444.3647953

Swapna, A., Vemula, H. L., Amarnath, B., & Sasidhar, B. (2024). Leveraging the power of deep learning, machine learning, artificial intelligence, and big data in finance and education. En 2024 4th International Conference on Technological Advancements in Computational Sciences (ICTACS) (pp. 322-327). IEEE Xplore. https://doi.org/10.1109/ICTACS62700.2024.10841229

Yang, Q., & Lee, Y.-C. (2024). Ethical AI in financial inclusion: The role of algorithmic fairness on user satisfaction and recommendation. Big Data and Cognitive Computing, 8(9), 105. https://doi.org/10.3390/bdcc8090105

Yasir, A., Ahmad, A., Abbas, S., Inairat, M., Al-Kassem, A. H., & Rasool, A. (2022). How artificial intelligence is promoting financial inclusion? A study on barriers of financial inclusion. En 2022 International Conference on Business Analytics for Technology and Security (ICBATS) (pp. 1-6). IEEE Xplore. https://doi.org/10.1109/ICBATS54253.2022.9759038

Yin, F., Zhang, R., Pan, C.-L., & Luo, C. (2025). Scientific quantitative analysis of artificial intelligence in the financial industry. En Proceedings of the 2025 International Conference on Digital Economy and Information Systems (DEIS ‘25) (pp. 214-219). Association for Computing Machinery. https://doi.org/10.1145/3745133.3745169

Published

2025-12-19

Issue

Section

Review papers

How to Cite

Cepeda Cavero, L. E., & Véliz Soto, M. P. (2025). Ethics and Algorithmic Governance in the Financial Sector: A Systematic Review of Principles, Governance, and Implementation Gaps. Interfases, 022, 159-184. https://doi.org/10.26439/interfases2025.n022.8230