Automated classification of citrus areas using SVM and NDVI temporal patterns: applications for precision agriculture and logistics management
DOI:
https://doi.org/10.26439/interfases2025.n021.7858Keywords:
sustainable agricultural supply chains, precision agriculture, agrologisticsAbstract
This study developed a model based on Support Vector Machines (SVM) and Normalized Difference Vegetation Index (NDVI) time series to classify citrus areas in Álamo, Veracruz, Mexico. MODIS images (MOD13Q1, 250 m resolution) from 2003 to 2022 were used, processed using radiometric correction, noise filtering, and temporal harmonization. Training areas were classified into four categories: citrus, natural vegetation, grasslands, and urban areas, using 3,759 time series, 50 % of which were positive for citrus. The SVM model (RBF kernel: γ = 0.1, C = 10) achieved an accuracy of 91.4 % using 5-fold cross-validation, with 88% success in citrus and 93.9 % in non-citrus samples. The results showed an average NDVI of 0.74 for citrus, distinguishable from weeds (0.87), although with challenges in small plots due to spatial resolution. The estimates coincided with official data (SIACON) in 2021 (548 ha difference), although they presented discrepancies in years with droughts (2007, 2015) or management changes (2019-2020). Climatic and anthropogenic factors were identified as affecting NDVI dynamics, demonstrating the model’s usefulness for agricultural monitoring limitations include pixel mixing in heterogeneous areas. This work demonstrates that the SVM-NDVI approach is robust for classifying citrus areas at a regional scale, with potential applications in logistics management, such as transport route optimization and crop planning using spatiotemporal NDVI patterns. These findings open up opportunities to integrate remote sensing and machine learning into sustainable agricultural supply chains.
Downloads
References
Aguilar Lome, J. (2021). Identificación temprana y evaluación de procesos de degradación de tierras y sequía empleando datos-imágenes de satélite [Tesis de doctorado, Universidad Nacional Mayor de San Marcos]. Repositorio Institucional UNMSM. https://cybertesis.unmsm.edu.pe/handle/20.500.12672/17542
Bautista, R., Constante, P., Gordon, A., & Mendoza, D. (2018). Diseño e implementación de un sistema de visión artificial para análisis de datos NDVI en imágenes espectrales de cultivos de brócoli obtenidos mediante una aeronave pilotada remotamente. Infociencia, 12, 30-35. https://doi.org/10.24133/infociencia.v12i1.1230
Bautista-Santos, H., Martínez-Flores, J. L., Fernández-Lambert, G., Bernabé-Loranca, M. B., Sánchez-Galván, F., & Sablón-Cossío, N. (2015). Modelo de integración de cadenas de suministro colaborativas. Dyna, 82(193), 145-154. http://dx.doi.org/10.15446/dyna.v82n193.47370
Choubin, B., Soleimani, F., Pirnia, A., Sajedi-Hosseini, F., Alilou, H., Rahmati, O., Melesse, A. M., Singh, V. P., & Shahabi, H. (2019). Effects of drought on vegetative cover changes: Investigating spatiotemporal patterns. En A. M. Melesse, W. Abtew & G. Senay (Eds.), Extreme hydrology and climate variability (pp. 213-222). Elsevier. https://doi.org/10.1016/B978-0-12-815998-9.00017-8
Cleves-Leguizamo, J. A., Ramírez-Castañeda, L. N., & Díaz, E. D. (2021). Proposal of an empirical model to estimate the productivity of ‘Valencia’ orange (Citrus sinensis L. Osbeck) in the Colombian low tropics. Revista Colombiana de Ciencias Hortícolas, 15(3), e10860. https://doi.org/10.17584/rcch.2021v15i3.10860
Didan, K. (2021). MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V061 [Conjunto de datos]. NASA EOSDIS; USGS. https://doi.org/10.5067/MODIS/MOD13Q1.061
Dirección General del Servicio de Información Agroalimentaria y Pesquera. (2023). SIACON. Sistema de Información Agroalimentaria de Consulta. Gobierno de México. https://www.gob.mx/agricultura/dgsiap/documentos/siacon-ng-161430
Fernández-Echeverría, E., Lavoignet-Ruiz, M., García-Santamaría, L. E., Fernández-Lambert, G., Ruvalcaba-Sánchez, L., Bautista-Santos, H., Sánchez-Galván, F., & Romero-Romero, Y. (2024). Management of citrus cultivation in emerging rural communities in Mexico: Practices and challenges in the central-northern region of Veracruz. Sustainability, 16(20), 8732. https://doi.org/10.3390/su16208732
Figueira Branco, E. R., Rosa dos Santos, A., Macedo Pezzopane, J. E., Banhos dos Santos, A., Alexandre, R. S., Pimentel Bernardes, V., Gomes da Silva, R., Barbosa de Souza, K., & Moura, M. M. (2019). Space-time analysis of vegetation trends and drought occurrence in domain area of tropical forest. Journal of Environmental Management, 246, 384-396. https://doi.org/10.1016/j.jenvman.2019.05.097
Girimonte, P., & García, J. (2020). El índice NDVI y la clasificación de áreas sembradas aprendizaje automático no supervisado “k-means”. Revista de investigación en modelos matemáticos aplicados a la gestión y la economía, 1(7), 39-52. https://www.economicas.uba.ar/wp-content/uploads/2016/04/Girimonte-Garcia-Fronti.pdf
Hsu, C. W., Chang, C. C., & Lin, C.-J. (2016). A practical guide to support vector classification. National Taiwan University. https://eecs.csuohio.edu/~sschung/DSA460/SVM_guide.pdf
Instituto Nacional de Estadística y Geografía. (2010). Compendio de información geográfica municipal 2010. Álamo Temapache. Veracruz de Ignacio de la Llave. https://www.inegi.org.mx/contenidos/app/mexicocifras/datos_geograficos/30/30160.pdf
Kadhim, Z., Khayyun, T., & Alwan, I. (2022). Impact of climate change on crops productivity using MODIS-NDVI time series. Civil Engineering Journal, 8(6), 1136. https://doi.org/10.28991/CEJ-2022-08-06-04
Khare, S., Drolet, G., Sylvain, J.-D., Paré, M. C., & Rossi, S. (2019). Assessment of spatio-temporal patterns of black spruce bud phenology across Quebec based on MODIS-NDVI time series and field observations. Remote Sensing, 11(23), 2745. https://doi.org/10.3390/rs11232745
Kiani, F., Randazzo, G., Yelmen, I., Seyyedabbasi, A., Nematzadeh, S., Anka, F. A., Erenel, F., Zontul, M., Lanza, S., & Muzirafuti, A. (2022). A smart and mechanized agricultural application: From cultivation to harvest. Applied Sciences, 12(12), 6021. https://doi.org/10.3390/app12126021
Measho, S., Chen, B., Trisurat, Y., Pellikka, P., Guo, L., Arunyawat, S., Tuankrua, V., Ogbazghi, W., & Yemane, T. (2019). Spatio-temporal analysis of vegetation dynamics as a response to climate variability and drought patterns in the semiarid region, Eritrea. Remote Sensing, 11(6), 724. https://doi.org/10.3390/rs11060724
Mu, S., Li, B., Yao, J., Yang, G., Wan, R., & Xu, X. (2020). Monitoring the spatio-temporal dynamics of the wetland vegetation in Poyang Lake by Landsat and MODIS observations. Science of The Total Environment, 725, 138096. https://doi.org/10.1016/j.scitotenv.2020.138096
Nolasco, M., Martinez Arraigada, M. de los Á., & Bocco, M. (2023). Caracterización del ciclo del cultivo de trigo en la provincia de Córdoba mediante teledetección. Congreso Argentino de AgroInformática, 9(4), 34-45. http://sedici.unlp.edu.ar/handle/10915/165446
Novo-Fernández, A., Franks, S., Wehenkel, C., López-Serrano, P. M., Molinier, M., & López-Sánchez, C. A. (2018). Landsat time series analysis for temperate forest cover change detection in the Sierra Madre Occidental, Durango, Mexico. International Journal of Applied Earth Observation and Geoinformation, 73, 230-244. https://doi.org/10.1016/j.jag.2018.06.015
Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria. (2022). Análisis de impacto económico ante un posible establecimiento y de dispersión del cancro de los cítricos en México en áreas comerciales. https://dj.senasica.gob.mx/Contenido/files/2022/agosto/An%C3%A1lisisdeimpactoecon%C3%B3micoanteunposibleestablecimientoydispersi%C3%B3ndelCancrodelosc%C3%ADtricosenM%C3%A9xicoen%C3%A1reascomerciales_107e4f44-49be-4b9a-8058-df20da906b1a.pdf
Testa, S., Soudani, K., Boschetti, L., & Borgogno Mondino, E. (2018). MODIS-derived EVI, NDVI and WDRVI time series to estimate phenological metrics in French deciduous forests. International Journal of Applied Earth Observation and Geoinformation, 64, 132-144. https://doi.org/10.1016/j.jag.2017.08.006
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under an Attribution 4.0 International (CC BY 4.0) License. that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Last updated 03/05/21
