Analysis of Features in Big Data Projects: A Systematic Literature Review
DOI:
https://doi.org/10.26439/interfases2024.n020.7457Keywords:
methodology, big data technology, enterprise data managementAbstract
In the implementation of big data projects, several problems are identified that may be due to different factors, such as the low quality of the data used with anomalies that may affect the accuracy of the results or the lack of clarity in the business objectives. This situation can lead to errors in the decision making process, delays in deliveries and even the cancellation of the project. In this context, the present work arises from the need to compile previous research in order to know the importance of the application of a working methodology in big data projects. The objective is to identify the approaches of the most used methodologies and to analyze the characteristics of each one, as well as the common or transversal characteristics that allow the combination, or adaptation, of different methodologies in the same project. The generation of large volumes of data from different sources and formats ncreases the challenge of verifying quality, as they may present anomalies that affect the accuracy of the results obtained.
Downloads
References
Abdul Hamid, K., Abu Bakar, M., Jalar, A., & Hakim Badarisman, A. (2021). Incorporation of big data in methodology of identifying corrosion factors in the semiconductor package. En 2021 International Conference on Electrical, Communication, and Computer Engineering (ICECCE) (pp. 1-4). https://doi.org/10.1109/ICECCE52056.2021.9514240
Ahmad, Z., Yaacob, S., Ibrahim, R., & Farahwani, W. (2022). The review for visual analytics methodology. En 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (pp. 1-10). Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/HORA55278.2022.9800100
Bahit, E. (2012). Scrum & Extreme Programming (para programadores). Creative Commons.
Caffetti, Y. A., Eckert, K., Ruidías, H. J., & Vera Laceiras, M. S. (2023). Data cleansing en entornos big data: mapeo sistemático de la literatura. En S. Rodríguez, M. Giménez y M. A. Molina (Comps.), XXVIII Congreso Argentino de Ciencias de la Computación – CACIC 2022 (pp. 75-79). Editorial de la Universidad Nacional de La Rioja. https://repositoriosdigitales.mincyt.gob.ar/vufind/Record/SEDICI_1d437c59c0d397280848f3cfd422df97
Dai, H.-N., Wang, H., Xu, G., Wan, J., & Imran, M. (2019). Big data analytics for manufacturing internet of things: opportunities, challenges and enabling technologies. Enterprise Information Systems, 14(9-10), 1279-1303. https://doi.org/10.48550/arXiv.1909.00413
Dastgerdi, A., & Gandomani, T. (2021). On the appropriate methodologies for data science projects. En 2021 International Conference on Information Technology (pp. 667-673). Institute of Electrical and Electronic Engineers. https://doi.org/10.1109/ICIT52682.2021.9491712
Davenport, T. (2006). Competing on Analytics. Harvard Business Review https://hbr.org/2006/01/competing-on-analytics
Funde, S., & Swain, G. (2022). Big data privacy and security using abundant data recovery techniques and data obliviousness methodologies. IEEE Access, 10, 105458-205484. https://doi.org/10.1109/ACCESS.2022.3211304
García-Gil, D., García, S., Xiong, N., & Herrera, F. (2021). Smart data driven decision trees ensemble methodology for imbalanced big data. Cognitive Computation, 16, 1572-1588. https://doi.org/10.48550/arXiv.2001.05759
Jin, W., Yang, J., & Fang, Y. (2020). Application methodology of big data for emergency management. En 2020 IEEE 11th International Conference on Software Engineering and Service Science (ICSESS) (pp. 326-330). Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/ICSESS49938.2020.9237653
Kavakli, E., Sakellariou, R., Eleftheriou, I., & Mascolo, J. (2020). Towards a multiperspective methodology for big data requirements. En 2020 IEEE International Conference on Big Data (pp. 5719-5720). Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/BigData50022.2020.9378406
Khan, N., Alsaqer, M., Shah, H., Badsha, G., Abbasi, A., & Salehian, S. (2018). The 10 Vs, Issues and Challenges of Big Data. En ICBDE ’18 (pp. 52-56). Association for Computing Machinery. https://doi.org/10.1145/3206157.3206166
Kitchenham, B., & Charters, S. (2007). Guidelines for performing Systematic Literature Reviews in Software Engineering. Keele University; Durham University Joint Report.
Krasteva, I., & Ilieva, S. (2021). Adopting agile software development methodologies in big data projects – a systematic literature review of experience reports. En 2020 IEEE International Conference on Big Data (pp. 2028-2033). Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/BigData50022.2020.9378118
Manzano, F., & Avalos, D. (2023). Análisis de calidad de los datos en las estadísticas públicas y privadas, ante la implementación del Big Data. Ciencias Administrativas, 11(22), 1-11. https://doi.org/10.24215/23143738e119
Markopoulos, D., Tsolakidis, A., Karanikolas, N., Marinagi, A., & Skourlas, C. (2024). Applying soft system methodology for a clearer understanding of the future intensive care units. En PCI ‘23: Proceedings of the 27th Pan-Hellenic Conference on Progress in Computing and Informatics (pp. 163-170). Association for Computing Machinery. https://doi.org/10.1145/3635059.3635084
Ontiveros, E. (Dir.), Sabater, V. (Coord.)., Vizcaíno, D., Romero, M., & Llorente, A. (2018). Economía de los datos. Riqueza 4.0. Fundación Telefónica, Ariel España.
Project Management Institute. (2017). A guide to the project management knowledge. PMBOK Guide (6.ª ed).
Reggio, G., & Astesiano, E. (2020). Big-Data/Analytics projects failure: A literature review. En 2020 46th Euromicro Conference on Software Engineering and Advanced Applications (pp. 246-255). https://doi.org/10.1109/SEAA51224.2020.00050
Saltz, J., & Hotz, N. (2020). Identifying the most common frameworks data science teams use to structure and coordinate their projects. En 2020 IEEE International Conference on Big Data (pp. 2038-2042). Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/BigData50022.2020.9377813
Shu, W., Sun, W., & Li, Y. (2020). The development trend of design methodology under the influence of artificial intelligence and big data. En ICDLT ‘20: Proceedings of the 2020 4th International Conference on Deep Learning Technologies (pp. 104-108). Association for Computing Machinery. https://doi.org/10.1145/3417188.3417214
Song, X., Zhang, H., Akerkar, R., Huang, H., Guo, S., Zhong, L., Ji, Y., Opdahl, A. L., Purohit, H., Skupin, A., Pottathil, A., & Culotta, A. (2020). Big data and emergency management: concepts, methodologies, and applications. IEEE Transactions on Big Data, 8(2), 397-419. https://doi.org/10.1109/TBDATA.2020.2972871
Tardío, R., Maté, A., & Trujillo, J. (2020). An iterative methodology for defining big data analytics architectures. IEEE Access, 8, 210597-210616. https://doi.org/10.1109/ACCESS.2020.3039455
Zúñiga, F., Mora Poveda, D., & Llerena Llerena, W. (2023). El Big Data y su implicación en el marketing. Revista de Comunicación de la SEECI, 56, 302-321. https://doi.org/10.15198/seeci.2023.56.e832
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under an Attribution 4.0 International (CC BY 4.0) License. that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Last updated 03/05/21