Analysis of Academic Success Using Machine Learning: Addiction and ChatGPT

Authors

DOI:

https://doi.org/10.26439/interfases2024.n020.7390

Keywords:

ChatGPT, addiction, machine learning

Abstract

This paper analyzes the impact of the variables phone addiction, pornography addiction, number of times the phone is unlocked per hour, and level of confidence in ChatGPT on the academic success of a group of 4278 students from eight universities in Ecuador. The decision trees (DT), random forest (RF), and support vector machine (SVM) methods are used. The results obtained indicate similar levels of precision achieved in the three algorithms; in terms of accuracy, in the case of SMOTE, DT is the algorithm that presents the highest accuracy (accuracy = 0,64); and, in the case of RandomOverSampler, the SVM algorithm had the highest accuracy (accuracy = 0,59).

Downloads

Download data is not yet available.

References

Albalooshi, F., AlObaidy, H., & Ghanim, A. (2019). Mining students outcomes: An empirical study. International Journal of Computing and Digital Systems, 8(3), 229-241. https://doi.org/10.12785/ijcds/080303

Alghamdi, A. S., & Rahman, A. (2023). Data mining approach to predict success of secondary school students: A Saudi Arabian case study. Education Sciences, 13(3), 293. https://doi.org/10.3390/educsci13030293

Batool, S., Rashid, J., Nisar, M. W., Kim, J., Kwon, H. Y., & Hussain, A. (2023). Educational data mining to predict students’ academic performance: A survey study. Education and Information Technologies, 28, 905-971. https://doi.org/10.1007/s10639-022-11152-y

Beaulac, C., & Rosenthal, J. S. (2019). Predicting university students’ academic success and major using random forests. Research in Higher Education, 60, 1048-1064. https://doi.org/10.1007/s11162-019-09546-y

Blagus, R., & Lusa, L. (2013). SMOTE for high-dimensional class-imbalanced data. BMC Bioinformatics, 14(106), 1-16. https://doi.org/10.1186/1471-2105-14-106

Cai, Q., Lin, Y., & Yu, Z. (2023). Factors influencing learner attitudes towards ChatGPT-assisted language learning in higher education. International Journal of Human–Computer Interaction. Publicación anticipada en línea. https://doi.org/10.1080/10447318.2023.2261725

Chaudhury, P., & Tripathy, H. K. (2018). A study on impact of smartphone addiction on academic performance. International Journal of Engineering and Technology, 7(2.6), 50-53. https://doi.org/10.14419/ijet.v7i2.6.10066

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321-357. https://doi.org/10.1613/jair.953

Chen, Y.-C. (2006). A study of comparing the use of augmented reality and physical models in chemistry education. VRCIA’06: Virtual Reality Continuum and Its Applications 2006, 1, 369-372. https://doi.org/10.1145/1128923.1128990

Chen, Y., & Zhai, L. (2023). A comparative study on student performance prediction using machine learning. Education and Information Technologies, 28, 12039-12057. https://doi.org/10.1007/s10639-023-11672-1

Cui, W., Sangsongfar, A., & Amdee, N. (2024). A comparative study of the applicability of regression models in predicting student academic performance. Naresuan University Engineering Journal, 19(1), 39-49. https://ph01.tci-thaijo.org/index.php/nuej/article/view/255799

Elkhodr, M., Gide, E., Wu, R., & Darwish, O. (2023). ICT students’ perceptions towards ChatGPT: An experimental reflective lab analysis. STEM Education, 3(2), 70-88. https://doi.org/10.3934/steme.2023006

ElSharkawy, G., Helmy, Y., & Yehia, E. (2022). Employability prediction of information technology graduates using machine learning algorithms. International Journal of Advanced Computer Science and Applications, 13(10), 359-367. https://doi.org/10.14569/IJACSA.2022.0131043

Estabrooks, A., Jo, T., & Japkowicz, N. (2004). A multiple resampling method for learning from imbalanced data sets. Computational Intelligence, 20(1), 18-36. https://doi.org/10.1111/j.0824-7935.2004.t01-1-00228.x

García, V., Sánchez, J. S., Marqués, A. I., Florencia, R., & Rivera, G. (2020). Understanding the apparent superiority of over-sampling through an analysis of local information for class-imbalanced data. Expert Systems with Applications, 158, artículo 113026. https://doi.org/10.1016/j.eswa.2019.113026

Gutiérrez-Aguilar, O., Huarsaya-Rodriguez, E., & Duche-Pérez, A. (2024). The mediating effect of academic performance on ChatGPT satisfaction in university students. En G. F. Olmedo Cifuentes, D. G. Arcos Avilés y H. V. Lara Padilla (Eds.), Emerging research in intelligent systems – Proceedings of the CIT 2023 (v. 2, pp. 353-365). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-031-52258-1_26

Hellas, A., Ihantola, P., Petersen, A., Ajanovski, V. V., Gutica, M., Hynninen, T., Knutas, A., Leinonen, J., Messom, C., & Liao, S. N. (2018). Predicting academic performance: A systematic literature review. En G. Rößling y B. Scharlau (Eds.), ITiCSE 2018 companion: Proceedings companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education (pp. 175-199). Association for Computing Machinery. https://doi.org/10.1145/3293881.3295783

Hong, Y., Rong, X., & Liu, W. (2024). Construction of influencing factor segmentation and intelligent prediction model of college students’ cell phone addiction model based on machine learning algorithm. Heliyon, 10(8), e29245. https://doi.org/10.1016/j.heliyon.2024.e29245

Kovács, G. (2019). An empirical comparison and evaluation of minority oversampling techniques on a large number of imbalanced datasets. Applied Soft Computing, 83, artículo 105662. https://doi.org/10.1016/j.asoc.2019.105662

Musso, M. F., Rodríguez, C. F., & Cascallar, E. C. (2020). Predicting key educational outcomes in academic trajectories: A machine-learning approach. Higher Education, 80, 875-894. https://doi.org/10.1007/s10734-020-00520-7

Nachouki, M., Mohamed, E. A., Mehdi, R., & Abou Naaj, M. (2023). Student course grade prediction using the random forest algorithm: Analysis of predictors’ importance. Trends in Neuroscience and Education, 33, 100214. https://doi.org/10.1016/j.tine.2023.100214

Nayak, P., Vaheed, S., Gupta, S., & Mohan, N. (2023). Predicting students’ academic performance by mining the educational data through machine learning-based classification model. Education and Information Technologies, 28, 14611-14637. https://doi.org/10.1007/s10639-023-11706-8

Newaz, A., Hassan, S., & Haq, F. S. (2022). An empirical analysis of the efficacy of different sampling techniques for imbalanced classification. arXiv. Publicación anticipada en línea. https://doi.org/10.48550/arXiv.2208.11852

Sharma, N., Appukutti, S., Garg, U., Mukherjee, J., & Mishra, S. (2023). Analysis of student’s academic performance based on their time spent on extra-curricular activities using machine learning techniques. International Journal of Modern Education and Computer Science, 15(1), 46-57. https://doi.org/10.5815/ijmecs.2023.01.04

Imbalanced learn. (2014). RandomOverSampler. https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.RandomOverSampler.html#imblearn.over_sampling.RandomOverSampler

Wainer, J. (2024). An empirical evaluation of imbalanced data strategies from a practitioner’s point of view. Expert Systems with Applications, 256, 124863. https://doi.org/10.1016/j.eswa.2024.124863

Wongvorachan, T., He, S., & Bulut, O. (2023). A comparison of undersampling, oversampling, and SMOTE methods for dealing with imbalanced classification in educational data mining. Information, 14(1), 54. https://doi.org/10.3390/info14010054

Published

2024-12-26

Issue

Section

Research papers

How to Cite

Analysis of Academic Success Using Machine Learning: Addiction and ChatGPT. (2024). Interfases, 020, 15-29. https://doi.org/10.26439/interfases2024.n020.7390

Most read articles by the same author(s)