Cluster Analysis of Information on Urinary Tract Infections

Authors

DOI:

https://doi.org/10.26439/interfases2024.n020.7327

Keywords:

artificial intelligence, machine learning, health

Abstract

Urinary tract infections are the main reason for consultation in the pediatric emergency department worldwide, so it deserves to be analyzed with artificial intelligence techniques to discover patterns based on medical and laboratory information. Cluster analysis is an unsupervised machine learning technique that allows the identification of groups of patients with similar characteristics. In this work we analyzed information from patients whose anonymized information was extracted from a computer system, all of them are patients suffering from urinary tract infections. Multiple Correspondence Analysis was initially applied and then K-means and DBSCAN algorithms were used separately. The silhouette value of each group identified with the two algorithms was obtained. Patients were differentiated according to the prevalence percentages of sensitivity/resistance to certain antibiotics and the presence of the germs causing the infections.

Downloads

Download data is not yet available.

References

Ardila, M., Rojas, M., Santisteban, G., Gamero, A., & Torres, A. (2015). Infección urinaria en pediatría. Repertorio de Medicina y Cirugía, 24(2), 113-122. https://doi.org/10.31260/RepertMedCir.v24.n2.2015.632

Banerjee, A., Dashtban, A., Chen, S., Pasea, L., Thygesen, J. H., Fatemifar, G., Tyl, B., Dyszynski, T., Asselbergs, F. W., Lund, L. H., Lumbers, T., Denaxas, S., & Hemingway, H. (2023). Identifying subtypes of heart failure from three electronic health record sources with machine learning: An external, prognostic, and genetic validation study. The Lancet Digital Health, 5(6), e370-e379. https://doi.org/10.1016/s2589-7500(23)00065-1

Betrán, A., Lavilla, M. J., Cebollada, R., Calderón, J. M., & Torres, L. (2020). Resistencia antibiótica de Escherichia coli en infecciones urinarias nosocomiales y adquiridas en la comunidad del Sector Sanitario de Huesca 2016-2018. Revista Clínica de Medicina de Familia, 13(3), 198-202. https://scielo.isciii.es/pdf/albacete/v13n3/1699-695X-albacete-13-03-198.pdf

Bolt, H., Suffel, A., Matthewman, J., Sandmann, F., Tomlinson, L., & Eggo, R. (2023). Seasonality of acute kidney injury phenotypes in England: An unsupervised machine learning classification study of electronic health records. BMC Nephrology, 24(1), 234. https://doi.org/10.1186/s12882-023-03269-0

Cavagnaro Santa María, F. (2014). Resistencia antibiótica en la infección urinaria: la historia sin fin. Boletín Médico del Hospital Infantil de México, 71(6), 329-331. https://doi.org/10.1016/j.bmhimx.2014.12.001

Chacaguasay, M., Reátegui, R., Valdiviezo-Diaz, P., & Chicaiza, J. (2024). Unsupervized techniques to identify patterns in gynecologic information. En G. Li, J. Filipe y Z. Xu (Eds.), Communications in Computer and Information Science (pp. 31-43). https://doi.org/10.1007/978-3-031-58956-0_3

Elgoibar, B., Gangoiti, I., Garcia-Garcia, J. J., Hernandez-Bou, S., Gomez, B., Martinez, L., & Mintegi, S. (2020). Paediatric Escherichia coli bacteraemia presentations and high-risk factors in the emergency department. Acta Paediatrica, 110(3), 1032- 1037. https://doi.org/10.1111/apa.15549

Hadikurniawati W., Hartomo K. D., & Sembiring, I. (2023, 24 de noviembre). Spatial clustering of child malnutrition in central Java: A comparative analysis sing k-means and DBSCAN. En 2023 International Conference on Modeling & E-Information Research, Artificial Learning and Digital Applications (ICMERALDA) (pp. 242-247). Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/icmeralda60125.2023.10458202

Hevia, P., Alarcón, C., Gonzalez, C., Nazal, V., & Rosati, M. P. (2020). Recomendaciones sobre diagnóstico, manejo y estudio de la infección del tracto urinario en pediatría. Rama de Nefrología de la Sociedad Chilena de Pediatría. Parte 1. Revista Chilena de Pediatría, 91(2), 281-288. https://doi.org/10.32641/rchped.v91i2.1267

Hobensack, M., Zhao, Y., Scharp, D., Volodarskiy, A., Slotwiner, D., & Reading, M. (2023). Characterising symptom clusters in patients with atrial fibrillation undergoing catheter ablation. Open Heart, 10(2), e002385. https://doi.org/10.1136/openhrt-2023-002385

Josephson, C. B., Gonzalez-Izquierdo, A., Engbers, J. D., Denaxas, S., Delgado-Garcia, G., Sajobi, T. T., Wang, M., Keezer, M. R., & Wiebe, S. (2023). Association of comorbidsocioeconomic clusters with mortality in late onset epilepsy derived through unsupervised machine learning. Seizure: European Journal of Epilepsy, 111, 58-67. https://doi.org/10.1016/j.seizure.2023.07.016

Krueger, C., Alqurashi, W., Barrowman, N., Litwinska, M., & Le Saux, N. (2024). The long and the short of pediatric emergency department antibiotic prescribing: A retrospective observational study. The American Journal of Emergency Medicine, 75, 131-136. https://doi.org/10.1016/j.ajem.2023.10.052

Leung, A. K. C., Wong, A. H. C., Leung, A. A. M., & Hon, K. L. (2019). Urinary tract infection in children. Recent Patents on Inflammation & Allergy Drug Discovery, 13(1), 2-18. https://doi.org/10.2174/1872213X13666181228154940

Martins, C., Neves, B., Teixeira, A. S., Froes, M., Sarmento, P., Machado, J., Magalhães, C. A., Silva, N. A., Silva, M. J., & Leite, F. (2024). Identifying aubgroups in heart failure patients with multimorbidity by clustering and network analysis. BMC Medical Informatics and Decision Making, 24(1), artículo 95. https://doi.org/10.1186/s12911-024-02497-0

Mohanty, S., Hassan, F. M., Lenke, L. G., Lewerenz, E., Passias, P. G., Klineberg, E. O. Lafage, V., Smith, J. S., Hamilton, D. K., Gum, J. L., Lafage, R., Mullin, J., Diebo, B., Buell, T. J., Kim, H. J., Kebaish, K., Eastlack, R., Daniels, A. H., Mundis, G., ...Bess, S. (2024). Machine learning clustering of adult spinal deformity patients Identifies four prognostic phenotypes: A multicenter prospective cohort analysis with single surgeon external validation. The Spine Journal, 24(6), 1095-1108. https://doi.org/10.1016/j.spinee.2024.02.010

Salamzade, R., McElheny, C. L., Manson, A. L., Earl, A. M., Shaikh, N., & Doi, Y. (2023). Genomic epidemiology and antibiotic susceptibility profiling of uropathogenic Escherichia coli among children in the United States. mSphere, 8(5), e00184-23. https://doi.org/10.1128/msphere.00184-23

Shaikh, N., & Hoberman, A. (2022). Urinary tract infections in children: Epidemiology and risk factors. UpToDate. https://www.uptodate.com/contents/urinary-tractinfections-in-children-epidemiology-and-risk-factors?search=infection%20urinary%20children&source=search_result&selectedTitle=2~150&usage_type=default&display_rank=2#H2

Suwono, B., Eckmanns, T., Kaspar, H., Merle, R., Zacher, B., Kollas, C., Weiser, A. A., Noll, I., Feig, M., & Tenhagen, B. (2021). Cluster analysis of resistance combinations in Escherichia coli from different human and animal populations in Germany 2014-2017. PLoS ONE, 16(1), e0244413. https://doi.org/10.1371/journal.pone.0244413

Wazzan, A., Taconne, M., Le Rolle, V., Inngjerdingen, M., Hermann, K., Galli, E., Hernandez, A., Edvardsen, T., & Donal, E. (2024). Risk profiles for ventricular arrhythmias in hypertrophic cardiomyopathy through clustering analysis including left ventricular strain. International Journal of Cardiology, 409, 132167. https://doi.org/10.1016/j.ijcard.2024.132167

Whelan, S. O., Kyne, S., Dore, A., Glynn, M., Higgins, F., Hanahoe, B., Moriarty, F., Moylett, E., & Cormican, M. (2024). Paediatric Escherichia coli urinary tract infection: Susceptibility trends and clinical management. A retrospective analysis of a 10-year period. Irish Journal of Medical Science, 193, 1891-1900. https://doi.org/10.1007/s11845-024-03670-0

Published

2024-12-26

Issue

Section

Research papers

How to Cite

Reátegui Rojas, R. M., & Carrillo Mayanquer, M. I. (2024). Cluster Analysis of Information on Urinary Tract Infections. Interfases, 020, 31-46. https://doi.org/10.26439/interfases2024.n020.7327