Cluster Analysis of Information on Urinary Tract Infections
DOI:
https://doi.org/10.26439/interfases2024.n020.7327Keywords:
artificial intelligence, machine learning, healthAbstract
Urinary tract infections are the main reason for consultation in the pediatric emergency department worldwide, so it deserves to be analyzed with artificial intelligence techniques to discover patterns based on medical and laboratory information. Cluster analysis is an unsupervised machine learning technique that allows the identification of groups of patients with similar characteristics. In this work we analyzed information from patients whose anonymized information was extracted from a computer system, all of them are patients suffering from urinary tract infections. Multiple Correspondence Analysis was initially applied and then K-means and DBSCAN algorithms were used separately. The silhouette value of each group identified with the two algorithms was obtained. Patients were differentiated according to the prevalence percentages of sensitivity/resistance to certain antibiotics and the presence of the germs causing the infections.
Downloads
References
Ardila, M., Rojas, M., Santisteban, G., Gamero, A., & Torres, A. (2015). Infección urinaria en pediatría. Repertorio de Medicina y Cirugía, 24(2), 113-122. https://doi.org/10.31260/RepertMedCir.v24.n2.2015.632
Banerjee, A., Dashtban, A., Chen, S., Pasea, L., Thygesen, J. H., Fatemifar, G., Tyl, B., Dyszynski, T., Asselbergs, F. W., Lund, L. H., Lumbers, T., Denaxas, S., & Hemingway, H. (2023). Identifying subtypes of heart failure from three electronic health record sources with machine learning: An external, prognostic, and genetic validation study. The Lancet Digital Health, 5(6), e370-e379. https://doi.org/10.1016/s2589-7500(23)00065-1
Betrán, A., Lavilla, M. J., Cebollada, R., Calderón, J. M., & Torres, L. (2020). Resistencia antibiótica de Escherichia coli en infecciones urinarias nosocomiales y adquiridas en la comunidad del Sector Sanitario de Huesca 2016-2018. Revista Clínica de Medicina de Familia, 13(3), 198-202. https://scielo.isciii.es/pdf/albacete/v13n3/1699-695X-albacete-13-03-198.pdf
Bolt, H., Suffel, A., Matthewman, J., Sandmann, F., Tomlinson, L., & Eggo, R. (2023). Seasonality of acute kidney injury phenotypes in England: An unsupervised machine learning classification study of electronic health records. BMC Nephrology, 24(1), 234. https://doi.org/10.1186/s12882-023-03269-0
Cavagnaro Santa María, F. (2014). Resistencia antibiótica en la infección urinaria: la historia sin fin. Boletín Médico del Hospital Infantil de México, 71(6), 329-331. https://doi.org/10.1016/j.bmhimx.2014.12.001
Chacaguasay, M., Reátegui, R., Valdiviezo-Diaz, P., & Chicaiza, J. (2024). Unsupervized techniques to identify patterns in gynecologic information. En G. Li, J. Filipe y Z. Xu (Eds.), Communications in Computer and Information Science (pp. 31-43). https://doi.org/10.1007/978-3-031-58956-0_3
Elgoibar, B., Gangoiti, I., Garcia-Garcia, J. J., Hernandez-Bou, S., Gomez, B., Martinez, L., & Mintegi, S. (2020). Paediatric Escherichia coli bacteraemia presentations and high-risk factors in the emergency department. Acta Paediatrica, 110(3), 1032- 1037. https://doi.org/10.1111/apa.15549
Hadikurniawati W., Hartomo K. D., & Sembiring, I. (2023, 24 de noviembre). Spatial clustering of child malnutrition in central Java: A comparative analysis sing k-means and DBSCAN. En 2023 International Conference on Modeling & E-Information Research, Artificial Learning and Digital Applications (ICMERALDA) (pp. 242-247). Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/icmeralda60125.2023.10458202
Hevia, P., Alarcón, C., Gonzalez, C., Nazal, V., & Rosati, M. P. (2020). Recomendaciones sobre diagnóstico, manejo y estudio de la infección del tracto urinario en pediatría. Rama de Nefrología de la Sociedad Chilena de Pediatría. Parte 1. Revista Chilena de Pediatría, 91(2), 281-288. https://doi.org/10.32641/rchped.v91i2.1267
Hobensack, M., Zhao, Y., Scharp, D., Volodarskiy, A., Slotwiner, D., & Reading, M. (2023). Characterising symptom clusters in patients with atrial fibrillation undergoing catheter ablation. Open Heart, 10(2), e002385. https://doi.org/10.1136/openhrt-2023-002385
Josephson, C. B., Gonzalez-Izquierdo, A., Engbers, J. D., Denaxas, S., Delgado-Garcia, G., Sajobi, T. T., Wang, M., Keezer, M. R., & Wiebe, S. (2023). Association of comorbidsocioeconomic clusters with mortality in late onset epilepsy derived through unsupervised machine learning. Seizure: European Journal of Epilepsy, 111, 58-67. https://doi.org/10.1016/j.seizure.2023.07.016
Krueger, C., Alqurashi, W., Barrowman, N., Litwinska, M., & Le Saux, N. (2024). The long and the short of pediatric emergency department antibiotic prescribing: A retrospective observational study. The American Journal of Emergency Medicine, 75, 131-136. https://doi.org/10.1016/j.ajem.2023.10.052
Leung, A. K. C., Wong, A. H. C., Leung, A. A. M., & Hon, K. L. (2019). Urinary tract infection in children. Recent Patents on Inflammation & Allergy Drug Discovery, 13(1), 2-18. https://doi.org/10.2174/1872213X13666181228154940
Martins, C., Neves, B., Teixeira, A. S., Froes, M., Sarmento, P., Machado, J., Magalhães, C. A., Silva, N. A., Silva, M. J., & Leite, F. (2024). Identifying aubgroups in heart failure patients with multimorbidity by clustering and network analysis. BMC Medical Informatics and Decision Making, 24(1), artículo 95. https://doi.org/10.1186/s12911-024-02497-0
Mohanty, S., Hassan, F. M., Lenke, L. G., Lewerenz, E., Passias, P. G., Klineberg, E. O. Lafage, V., Smith, J. S., Hamilton, D. K., Gum, J. L., Lafage, R., Mullin, J., Diebo, B., Buell, T. J., Kim, H. J., Kebaish, K., Eastlack, R., Daniels, A. H., Mundis, G., ...Bess, S. (2024). Machine learning clustering of adult spinal deformity patients Identifies four prognostic phenotypes: A multicenter prospective cohort analysis with single surgeon external validation. The Spine Journal, 24(6), 1095-1108. https://doi.org/10.1016/j.spinee.2024.02.010
Salamzade, R., McElheny, C. L., Manson, A. L., Earl, A. M., Shaikh, N., & Doi, Y. (2023). Genomic epidemiology and antibiotic susceptibility profiling of uropathogenic Escherichia coli among children in the United States. mSphere, 8(5), e00184-23. https://doi.org/10.1128/msphere.00184-23
Shaikh, N., & Hoberman, A. (2022). Urinary tract infections in children: Epidemiology and risk factors. UpToDate. https://www.uptodate.com/contents/urinary-tractinfections-in-children-epidemiology-and-risk-factors?search=infection%20urinary%20children&source=search_result&selectedTitle=2~150&usage_type=default&display_rank=2#H2
Suwono, B., Eckmanns, T., Kaspar, H., Merle, R., Zacher, B., Kollas, C., Weiser, A. A., Noll, I., Feig, M., & Tenhagen, B. (2021). Cluster analysis of resistance combinations in Escherichia coli from different human and animal populations in Germany 2014-2017. PLoS ONE, 16(1), e0244413. https://doi.org/10.1371/journal.pone.0244413
Wazzan, A., Taconne, M., Le Rolle, V., Inngjerdingen, M., Hermann, K., Galli, E., Hernandez, A., Edvardsen, T., & Donal, E. (2024). Risk profiles for ventricular arrhythmias in hypertrophic cardiomyopathy through clustering analysis including left ventricular strain. International Journal of Cardiology, 409, 132167. https://doi.org/10.1016/j.ijcard.2024.132167
Whelan, S. O., Kyne, S., Dore, A., Glynn, M., Higgins, F., Hanahoe, B., Moriarty, F., Moylett, E., & Cormican, M. (2024). Paediatric Escherichia coli urinary tract infection: Susceptibility trends and clinical management. A retrospective analysis of a 10-year period. Irish Journal of Medical Science, 193, 1891-1900. https://doi.org/10.1007/s11845-024-03670-0
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under an Attribution 4.0 International (CC BY 4.0) License. that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Last updated 03/05/21
