Biometric Identification System Based on Voice Recognition Sing Cepstral Coefficients For Spoofing Detection in Telephone Calls

Authors

DOI:

https://doi.org/10.26439/interfases2023.n018.6625

Keywords:

voice biometrics, Mel frequency cepstral coefficients, spoofing prevention

Abstract

Computer crimes in the telematic systems of company’s harm society because they cause a climate of uncertainty in customers, who have the perception that the computer system, in charge of managing the service or product to be consumed, is not so secure as to trust its money or make transactions remotely. One of the most widespread computer crimes is Spoofing, which consists of impersonating the identity of a person or entity. The objective is to implement a voice recognition system as a mobile application to identify cases of voice impersonation by Spoofing through telephone calls. For this purpose, the Mel scale cepstral coefficients (MFCC) were used as a classifier for cleaning anomalies in the audios, as well as back-propagation neural networks for the user identification system that works together within a mobile application. In the tests carried out, the proposed system had a success rate of 83.5% with 20 entities that were designed by the author out of a total of 2000 audios with 100 corresponding audios from each author for the respective research work. It is concluded that the system is successful in the field of security since it has an optimal acceptance rate and must have a robust system for the different types of Spoofing that has been collected in this research work.

Downloads

Download data is not yet available.

References

Alegre, F., Amehraye, A., & Evans, N. (2013). A one-class classification approach to generalised speaker verification spoofing countermeasures using local binary patterns. IEEE 6th International Conference on Biometrics: Theory, Applications and Systems, BTAS 2013. https://doi.org/10.1109/BTAS.2013.6712706

Cabeza, Y. (2023). Denuncias por ciberdelincuencia se incrementan en un 150% en el 2023: mayoría son por fraude. https://www.infobae.com/peru/2023/09/09/denuncias-por-ciberdelincuencia-se-incrementan-en-un-150-en-el-2023-mayoria-son-por-fraude/

Fuertes, W., Zapata, P., Ayala, L., & Mejía, M. (2010). Plataforma de experimentación de ataques reales a redes IP utilizando tecnologías de virtualización. https://repositorio.espe.edu.ec/bitstream/21000/6057/1/AC-RIC-ESPE-034343.pdf

Kinnunen, T., Wu, Z. Z., Lee, K. A., Sedlak, F., Chng, E. S., & Li, H. (2012). Vulnerability of speaker verification systems against voice conversion spoofing attacks: The case of telephone speech. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 4401-4404. https://doi.org/10.1109/ICASSP.2012.6288895

Le, T., Gilberton, P., & Duong, N. Q. K. (2019). Discriminate natural versus loudspeaker emitted speech. arXiv, 1901.11291.

Martínez Mascorro, G. A., & Aguilar Torres, G. (2013). Reconocimiento de voz basado enMFCC, SBC y Espectrogramas. Ingenius (10), 12-20. https://doi.org/10.17163/ings.n10.2013.02

Morejón S. (2011). Segmentación de audio y de locutores para recuperación de información multimedia y su aplicación a videos de información turística. 118-170. https://repositorio.uam.es/bitstream/handle/10486/6734/39702_20110603LeticiaRueda.pdf?sequence=1&isAllowed=y

Mustafa, H., Xu, W., Sadeghi, A. R., & Schulz, S. (2014). You can call but you can’t hide: Detecting caller ID spoofing attacks. Proceedings of the International Conference on Dependable Systems and Networks. https://doi.org/10.1109/DSN.2014.102

Rueda, L. (2011). Mejoras en reconocimiento del habla basadas en mejoras en la parametrización de la voz. https://repositorio.uam.es/bitstream/handle/10486/6734/39702_20110603LeticiaRueda.pdf?sequence=1&isAllowed=y

Shukla, S., Ahirwar, M., Gupta, R., Jain, S., & Rajput, D. S. (2019). Audio Compression Algorithm using Discrete Cosine Transform (DCT) and Lempel-Ziv-Welch (LZW) Encoding Method. Proceedings of the International Conference on Machine Learning, Big Data, Cloud and Parallel Computing: Trends, Prespectives and Prospects, COMITCon 2019. https://doi.org/10.1109/COMITCon.2019.8862228

Singh, R., Gencaga, D., & Raj, B. (2016). Formant manipulations in voice disguise by mimicry. 4th International Conference on Biometrics and Forensics (IWBF), pp. 1-6, https://doi.org/10.1109/IWBF.2016.7449675

Toro Cerón, L. G. (2018). Análisis de Estrés en la Voz Utilizando Coeficientes Cepstrales de Mel y Máquina de Vectores de Soporte. https://bibliotecadigital.usb.edu.co/entities/publication/41b81de7-886a-4763-bd62-386dbddad29b

Wang, Y., & Lawlor, B. (2017). Speaker recognition based on MFCC and BP neural networks. 28th Irish Signals and Systems Conference, ISSC 2017, 0-3. https://doi.org/10.1109/ISSC.2017.7983644

Zorro, M. (2022). Irish arrests in global anti-fraud operation. BBC News NI. https://www.bbc.com/news/articles/czq3d1ld6l9o

Published

2023-12-29

Issue

Section

Research papers

How to Cite

Guzman Zumaeta, A. K. (2023). Biometric Identification System Based on Voice Recognition Sing Cepstral Coefficients For Spoofing Detection in Telephone Calls. Interfases, 018, 235-254. https://doi.org/10.26439/interfases2023.n018.6625