Machine learning application for campaigns marketing in commercial banking

Authors

DOI:

https://doi.org/10.26439/interfases2022.n016.5953

Keywords:

banking, marketing, fixed-term deposits, machine learning, classification algorithms

Abstract

Banks use telemarketing to contact potential customers for their products directly. This sales channel is complex, requiring large databases of possible prospects, and is subject to time and personnel restrictions. This article has three objectives: to compare five prediction models based on machine learning algorithms to find the one that offers the best predictive accuracy, deploy a pilot of this model, and recommend a roadmap for the future architecture that supports it. The comparison results show that the selected algorithm considerably improves the identification of customers who accept the product, which went from 11 % to 94 %, so its implementation can contribute to the competitiveness of these organizations.

Downloads

Download data is not yet available.

References

Arango Serna, M. D., Londoño Salazar, J. E., & Zapata Cortés, J. A. (2010). Arquitectura empresarial: una visión general. Revista Ingenierías Universidad de Medellín, 9(16), 101-111.

Asha, R. B., & Kumar, K. R. (2021). Credit card fraud detection using artificial neural network. Global Transitions Proceedings, 2(1), 35-41. https://doi.org/10.1016/j.gltp.2021.01.006

Berrar, D. (2018). Bayes’ theorem and naive Bayes classifier. En Encyclopedia of bioinformatics and computational biology: ABC of bioinformatics (vol. 1, pp. 403-412). Elsevier. https://doi.org/10.1016/B978-0-12-809633-8.20473-1

Data Science Team. (2019). XGBoost. ¿Qué es? https://Datascience.Eu/Es/Programacion/Xgboost-4/

Dutta, S., Bose, P., Goyal, V., & Bandyopadhyay, S. K. (2021). Applying convolutional-GRU for term deposit likelihood prediction. International Journal of Engineering and Management Research, 11(3), 265-272. https://doi.org/10.20944/preprints202007.0101.v1

Goethals, F. G., Snoeck, M., Lemahieu, W., & Vandenbulcke, J. (2006). Management and enterprise architecture click: The FAD(E)E framework. Information Systems Frontiers, 8(2), 67-79. https://doi.org/10.1007/s10796-006-7971-1

Martínez Heras, J. (2020, 9 de octubre). Precision, recall, F1, accuracy en clasificación. IArtificial.net. https://www.iartificial.net/precision-recall-f1-accuracy-en-clasificacion/

Lankhorst, M. (2005). Enterprise architecture at work. Modelling, communication and analysis. Springer.

Miloslavskaya, N., & Tolstoy, A. (2016). Big data, fast data and data lake concepts. Procedia Computer Science, 88, 300-305. https://doi.org/10.1016/j.procs.2016.07.439

Moro, S., Laureano, R., & Cortez, P. (2011). Using data mining for bank direct marketing: An application of the CRISP-DM methodology. En P. Novais, J. Machado, C. Analide & A. Abelha (Ed.), ESM’2011. The 2011 European Simulation and Modelling Conference (pp. 117-121). EUROSIS.

Murty, M. N., & Devi, V. S. (2011). Pattern recognition an algorithmic approach. Springer.

Riedmiller, M., & Braun, H. (1993). A direct adaptive method for faster backpropagation learning: The RPROP algorithm. En IEEE International Conference on Neural Networks (vol. 1, pp. 586-591). DOI: 10.1109/ICNN.1993.298623

Rokach, L. (2016). Decision forest: Twenty years of research. Information Fusion, 27, 111-125. https://doi.org/10.1016/j.inffus.2015.06.005

Saleem, F., & Fakieh, B. (2020). Enterprise architecture and organizational benefits: A case study. Sustainability, 12(19), 8237. https://doi.org/10.3390/su12198237

Singh, A. (2018, 18 de junio). A comprehensive guide to ensemble learning. Analytics Vidhya. https://www.Analyticsvidhya.Com/Blog/2018/06/Comprehensive-Guide-for-Ensemble-Models/.

Zhang, C., Zhang, H., & Hu, X. (2019). A contrastive study of machine learning on funding evaluation prediction. IEEE Access, 7, 106307-106315. https://doi.org/10.1109/ACCESS.2019.2927517

Published

2022-12-23

Issue

Section

Research papers

How to Cite

Machine learning application for campaigns marketing in commercial banking. (2022). Interfases, 16(016), 187-200. https://doi.org/10.26439/interfases2022.n016.5953