Study of the Usability of an Augmented Reality Application in the Basic Construction of a Robotic Arm

Authors

DOI:

https://doi.org/10.26439/interfases2022.n015.5890

Keywords:

Augmented reality, robotic arm, hand tracking, usability

Abstract

Augmented reality (AR) can help in different areas of scientific research, such as handling expensive, easy-to-break or dangerous equipment. Since the components for the construction of a robot can be considerably expensive, augmented reality can be applied in the manufacture of robots to reduce costs, allowing users to experience handling robotic components without having to buy them. This study aims to measure the quality of user experience with an augmented reality application in robotics. To do this, we created an application that uses hand gestures to assemble a robotic arm. This article presents the results obtained, the user’s efficiency rates in assembling the robotic arm, and an assessment of the application’s usability.

The study aims to measure the quality of the user experience when interacting with an AR application in the field of robotics. Therefore, the application was built that uses hand gestures to instantiate the links as 3D images and subsequently assemble their mechanical parts of the robotic arm. Favorable results obtained are presented, such as the efficiency of users in assembling the links of the robotic arm, as well as the usability of the application in the conclusions.

Downloads

Download data is not yet available.

References

Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators & Virtual Environments, 6(4), 355-385. https://doi.org/10.1162/pres.1997.6.4.355

Cáceres Sánchez, J. S. (2019). Diseño de prototipo de aplicación para visualización de productos en realidad aumentada [Tesis de bachiller, Universidad San Francisco de Quito, Colegio de Ciencias e Ingenierías]. http://repositorio.usfq.edu.ec/handle/23000/8893

Chacón Malasquez, N., & Tuiro Achulle, J. M. (2018). Aplicación móvil de realidad aumentada, utilizando la metodología Mobile - D, para el entrenamiento de técnicos de mantenimiento de maquinaria pesada en la empresa Zamine Service Perú S.A.C. [Tesis de grado, Universidad Autónoma del Perú]. https://hdl.handle.net/20.500.13067/581

de la Cruz, E. I., Salazar, E. R., Romero, J. A., Jiménez, L. M., & Rodríguez, J. J. (2022). Control to manipulate robotic arms using augmented reality. En X.-S. Yang, S. Sherratt, N. Dey & A. Joshi (Eds.), Proceedings of Sixth International Congress on Information and Communication Technology. Lecture Notes in Networks and Systems (Vol. 216, pp. 101-112). Springer. https://doi.org/10.1007/978-981-16-1781-2_11

Delgado Barrera, J. D., & Duchi Farez, D. D. (2021). Desarrollo de una interfaz humano-computador mediante la animación de avatares generadores a partir de fotogrametría [Tesis de grado, Universidad Politécnica Salesiana Sede Cuenca]. https://dspace.ups.edu.ec/handle/123456789/21214

Díaz Álvarez, J. (2021). Visión por computador para el uso de realidad aumentada en Unity3D [Tesis de grado, Universidad Politécnica de Madrid]. https://oa.upm.es/68007/

Fang, H. C., Ong, S. K., & Nee, A. Y. C. (2014). A novel augmented reality-based interface for robot path planning. International Journal on Interactive Design and Manufacturing (IJIDeM), 8, 33-42. https://doi.org/10.1007/s12008-013-0191-2

Lugaresi, C., Tang, J., Nash, H., McClanahan, C., Uboweja, E., Hays, M., Zhang, F., Chang, C.-L., Yong, M., Lee, J., Chang, W.-T., Hua, W., Georg, M., & Grundmann, M. (2019). MediaPipe: A framework for perceiving and processing reality. Third Workshop on Computer Vision for AR/VR at IEEE Computer Vision and Pattern Recognition (CVPR) 2019. https://mixedreality.cs.cornell.edu/s/NewTitle_May1_MediaPipe_CVPR_CV4ARVR_Workshop_2019.pdf

MediaPipe (2020). MediaPipe Hands. MediaPipe on GitHub. https://google.github.io/mediapipe/solutions/hands.html

Nielsen, J., & Landauer, T. K. (1993, 24-29 de abril). A mathematical model of the finding of usability problems. Proceedings of the INTERACT ’93 and CHI ’93 Conference on Human Factors in Computing Systems (CHI ’93). Association for Computing Machinery, 206-213. https://doi.org/10.1145/169059.169166

Pérez López, B. (2021). Aplicación de realidad aumentada para la docencia online [Tesis de grado, Universidad de Alicante]. https://rua.ua.es/dspace/bitstream/10045/115955/1/Sistema_de_reconocimiento_de_manos_y_realidad_virtual_Perez_Lopez_Borja.pdf

Pasaréti, O., Hajdú, H., Matusaka, T., Jámbori, A., Molnár, I., & Turcsányi-Szabó, M. (2011). Augmented reality in education. INFODIDACT 2011 Informatika Szakmódszertani Konferencia. https://people.inf.elte.hu/szlavi/InfoDidact11/Manuscripts/PO_HH_MT_JA_MI_TSzM.pdf

Samini, A., & Palmerius, K. L. (2017). Popular performance metrics for evaluation of interaction in virtual and augmented reality. 2017 International Conference on Cyberworlds (CW), 206-209. https://doi.org/10.1109/CW.2017.25

Vogel, C., Walter, C., & Elkmann, N. (2017). Safeguarding and supporting future human-robot cooperative manufacturing processes by a Projection- and Camera-based Technology. Procedia Manufacturing, 11, 39-46. https://doi.org/10.1016/j.promfg.2017.07.127

Ziden, A. A., Ziden, A. A. A., & Ifedayo, A. E. (2022). Effectiveness of augmented reality (AR) on students’ achievement and motivation in learning science. Eurasia Journal of Mathematics, Science and Technology Education, 18(4), em2097. https://doi.org/10.29333/ejmste/11923

Published

2022-07-29

Issue

Section

Research papers

How to Cite

Study of the Usability of an Augmented Reality Application in the Basic Construction of a Robotic Arm. (2022). Interfases, 15(015), 70-101. https://doi.org/10.26439/interfases2022.n015.5890