A Look at Big Data and the Conjoint Analysis
DOI:
https://doi.org/10.26439/interfases2015.n008.581Keywords:
big data, conjoint analysis, software SawtootAbstract
This article aims to expose the use of Big Data in Conjoint Analysis or analysis of sets (trade-off analysis). Companies are always developing new products, which is aided by the use of market data in in order to research and identifying the preferences of their targeted customers. Currently, the cluster analysis is one of the most used tools within market research. This is because it helps cut costs in the process. Through descriptive research, various investigations using conjoint analysis can be reviewed to gather information and simulate software tools like Sawtooth, taking advantage of Big Data technology. It can be concluded that transactional and social information used with Big Data can efficiently aid researchers if used in conjunction with the conjoint analysis.
Downloads
References
Agarwal, J., DeSarbo, W., Malhotra, N., y Rao, V. (2015). An interdisciplinary review of research in conjoint analysis: Recent developments and directions for future research. Customer Neds and Solutions, 2(1), 19-40. DOI:10.1007/s40547-014-0029-5
Ajjan Associates. (s. f.). Ajjan Associates. Conjoint analysis specialists. Recuperado de http://consulting.ajjan.com/conjoint.htm
Dobney. (s. f.). Dobney - Insight and Intelligence. Conjoint analysis. Recuperado de http://www.dobney.com/Conjoint/Conjoint_analysis.htm
Domigall, Y., Albani, A., y Winter, R. (2014). Identification of customer preferences for new service development in the electricity domain. 2014 IEEE 16th Conference on Business Informatics (pp. 207-214). DOI:10.1109/CBI.2014.34
Forsyth, J., y Boucher, L. (2015). Why big data is not enough. Research World 50, 26-27. DOI:10.1002/rwm3.20187
Harrar de Dienes, A., y Alcaide, J. (2007). Uso del análisis conjunto para la evaluación de un curso virtual de principios de procesos industriales. VII Reunión Nacional de Currículo. I Congreso Internacional de Calidad e Innovación en Educación Superior, Universidad Metropolitana de Venezuela y Universidad Politécnica de Valencia, Caracas.
Hruska, J. (19 de abril de 2013). Storage pricewatch: HDDs back to pre-food prices, SSDs grow as $/GB holds steady. Recuperado de http://www.extremetec.com/computing/153879-storage-pricewatch-hdds-back-to-pre-floodprices-ssds-grow-as-gb-holds-steady
Komorowski, M. (9 de marzo de 2014). A history of storage cost. Recuperado de http://www.mkomo.com/cost-per-gigabyte-update
Machado, M. (2014). Big data y servicios financieros. Ponencia presentada en la Jornada “Big data: de la investigación científica a la gestión empresarial” [en SlideShare]. Recuperado de http://es.slideshare.net/FundacionAreces/manuel-machadobig-data-de-la-investigacion-cientifica-a-la-gestion-empresarial
Orme, B. (2010). Getting started with conjoint analysis: strategies for product design and pricing research. (2.a ed.). Wisconsin: Research Publishes LLC.
Polyviou, A., Pouloudi, N., y Rizou, S. (2014). Which factors affect software-as-aservice selection the most? A study from the customer’s and the vendor’s perspective. 2014 47th Hawaii International Conference on System Sciences (pp. 5059-5068). IEEE. DOI:10.1109/HICSS.2014.621
Radler, B. (1993). A case study of conjoint analysis: New approaches to product line decisions. Tesis. Masster of Arts. (Psychology). Cleveland State University. United States of America.
Ringel, D., y Skiera, B. (2014). Understanding competition using big consumer search data. 2014 47th Hawaii International Conference on System Sciences (pp. 3129-3138). DOI: 10.1109/HICSS.2014.388
Salvador, F. (2014). Big data: ¿la ruta o el destino? Recuperado de http://www.ie.edu/fundacion_ie/Comun/Publicaciones/Publicaciones/Big%20Data%20ESP%207.pdf
Sawtooth Software. (2015). Conjoint Analysis. Sawtooth Software, the survey software of choice. Recuperado de http://www.sawtoothsoftware.com/products/conjoint-choice-analysis
Talledo, H. (2011). Más allá del conjoint analysis. ANDA News (Asociación Nacional de Anunciantes), 108, 37-41.
Ward, J. S., y Barker, A. (2014). Undefined by data: A survey of big data definitions. Recuperado de: http://www.adambarker.org/papers/bigdata_definition.pdf
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under an Attribution 4.0 International (CC BY 4.0) License. that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Last updated 03/05/21