Camera-based facial expression recognition system to analyze customer satisfaction level in a restaurant

Authors

  • Edwin Lara-Lévano Universidad de Lima (Perú)

DOI:

https://doi.org/10.26439/interfases2019.n012.4638

Keywords:

Customer satisfaction, facial expression recognition, histogram of oriented gradients, support vector machine, facial landmarks

Abstract

The main objective of this research is to develop a system that recognizes customers’ satisfaction or dissatisfaction in a restaurant based on their facial expressions when receiving the service provided by the establishment. The implementation of the system has a series of stages common to the development of a visual computing project, which will begin with data preprocessing to train the classifier to be used in this case: a support vector machine. This data preprocessing uses the histogram of oriented gradients for detecting a face inside an image, so that only the face outline is cut. In this way, facial landmarks of the image are extracted, the probability that each of the basic feelings appears in the facial expression of people is established, and, based on these probabilities, customers’ satisfaction or dissatisfaction is determined. The results show that the system correctly detected most of the images entered for the tests; however, there were some cases in which, despite the fact that customers were satisfied, they showed certain dissatisfaction expressions caused by external factors.

Downloads

Download data is not yet available.

Author Biography

  • Edwin Lara-Lévano, Universidad de Lima (Perú)

    Egresado de la Carrera de Ingeniería de Sistemas de la Universidad de Lima. Ha trabajado en Cementos Pacasmayo en el área de Inteligencia Comercial y actualmente labora en el área Digital de RIMAC Seguros. Sus áreas de interés son la inteligencia artificial y el análisis predictivo.

References

Acevedo, D., Negri, P., Buemi, M. E., Fernandez, F. G., y Mejail, M. (2017). A simple geome¬tric-based descriptor for facial expression recognition. 12th IEEE International Conference on Automatic Face & Gesture Recognition, pp. 802-808.

Campbell, C., y Ying, Y. (2011). Learning with support vector machines. Synthesis Lectures on Artificial Intelligence and Machine Learning, 5(1), pp. 1-95.

Carmona Suárez, E. J. (2014). Tutorial sobre máquinas de vectores soporte (SVM). Recuperado de http://www.ia.uned.es/~ejcarmona/publicaciones/[2013-Carmona]%20SVM.pdf

Dalal N., y Triggs, B. (2005). Histograms of oriented gradients for human detection. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), 1, pp. 886-893. doi:10.1109/CVPR.2005.177

Davis, F. (1994). El lenguaje de los gestos. Buenos Aires: Emecé Editores.

Ekman P., y Oster, H. (1979). Expresiones faciales de la emoción. Annual Review of Psychology, 30, pp. 527-554.

Gao, G., Jia, K., y Jiang, B. (2015). An automatic geometric features extracting approach for facial expression recognition based on corner detection. International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), pp. 302-305. Adelaide, SA, Australia: IEEE. doi:10.1109/IIH-MSP.2015.33

Khan, S., Rahmani, H., Ali Shah, S. A., y Bennamoun, M. (2018). A guide to convolutional neural networks for computer vision. Morgan & Claypool Publishers.

Lago, P., y Jiménez Guarín, C. (2013). An affective inference model based on facial expression analysis. IEEE Latin America Transactions, 12(3), pp. 423-429.

Ouanan, H., Ouanan, M., y Aksasse, B. (2016). Facial landmark localization: Past, present and future. 4th IEEE International Colloquium on Information Science and Technology (CiSt), pp. 487-493.

Ryu, B., Rivera, A. R., Kim, J., y Chae, O. (2017). Local directional ternary pattern for facial expression recognition. IEEE Transactions on Image Processing, 26(12), pp. 6006-6018.

Slim, M., Kachouri, R., y Atitallah, A. (2018). Customer satisfaction measuring based on the most significant facial emotion. 15th IEEE International Multi-Conference on Systems, Signals & Devices (SSD), pp. 502-507.

Whitehill, J., Serpell, Z., Lin, Y.-C., Foster, A., y Movellan, J. R. (2014). The faces of engagement: Automatic recognition of student engagementfrom facial expressions. IEEE Transactions on Affective Computing, 5(1), pp. 86-98.

Xia, L. (2014). Facial expression recognition based on SVM. 7th IEEE International Conference on Intelligent Computation Technology and Automation, pp. 256-259.

Downloads

Published

2019-12-09

Issue

Section

Research papers

How to Cite

Camera-based facial expression recognition system to analyze customer satisfaction level in a restaurant. (2019). Interfases, 12(012), 61-85. https://doi.org/10.26439/interfases2019.n012.4638