Prediction of applicants who will commit internal fraud in a company using supervised learning algorithms

Authors

  • Sergio Espinoza-Montalvo Universidad de Lima (Perú)

DOI:

https://doi.org/10.26439/interfases2019.n012.4637

Keywords:

Supervised learning, fraud prediction, antisocial personality disorder, internal fraud

Abstract

Internal fraud is a big problem for companies since it causes significant monetary losses. Several research studies have proposed to improve the personnel selection process using data mining. The present work suggests to use applicants’ historical information in order to predict if they will commit fraud during their working period in a company. There are models with high precision level but with a higher error rate to find fraud. After several ex­perimentations, around seven variables which contribute more to the model were found. Some of these variables match those mentioned in studies about antisocial personality disorder. The algorithm with best results was a convolutional neural network with 80% accuracy rate. It is concluded that applicants’ information is important to establish if they will commit internal fraud during their working period in a company.

Downloads

Download data is not yet available.

Author Biography

  • Sergio Espinoza-Montalvo, Universidad de Lima (Perú)

    Egresado de la Carrera de Ingeniería de Sistemas de la Universidad de Lima. Ha trabajado en Cementos Pacasmayo en el área de Inteligencia Comercial y actualmente labora en el área Digital de RIMAC Seguros. Sus áreas de interés son la inteligencia artificial y el análisis predictivo.

References

American Psychiatric Association (APA). (2013). Diagnostic and Statistical Manual of Mental Disorders. (5th ed.). American Psychiatric Publishing.

Aquino K., y Douglas, S. (2003). Identity threat and antisocial behavior in organizations: The moderating effects of individual differences, aggressive modeling, and hierarchical status. Organizational Behavior and Human Decision Processes, 90(1), pp. 195-208; doi: 10.1016/s0749-5978(02)00517-4

Bhattacharyya, S., Jha, S., Tharakunnel, K., y Westland, J. C. (2011). Data mining for credit card fraud: A comparative study. Decision Support Systems, 50(3), pp. 602-613. doi:10.1016/j.dss.2010.08.008

Chang, H. Y. (2009). Employee turnover: a novel prediction solution with effective feature selection. WSEAS Internation Conference on Computer Engineering and Applications, 3(6), pp. 417-426.

EY. (s. f.). Construyendo un ambiente ético. Estudio sobre el riesgo de fraude en el Perú. Recuperado de http://www.ey.com/pe/es/services/assurance/fraud-investigation---dispute-services/construyendo-un-ambiente-etico-estudio-sobre-el-riesgo-de-fraude-en-el-peru

Horesh, R., Varshney, K. R., y Yi, J. (2016). Information retrieval, fusion, completion, and clus¬tering for employee expertise estimation. IEEE International Conference on Big Data.

Jantan, H., Hamdan, A. R., y Othman, A. (2011). Towards applying data mining techniques for talent management. 2009 International Conference on Computer Engineering and Applications, IPCSIT, 2, pp. 476-481. Singapore: IACSIT.

Kroll, K. (2012). Keeping the company safe: Preventing and detecting fraud. Financial Execu¬tive, 28(7), pp. 20-23.

Le Corff, Y., y Toupin, J. (2014). Overt versus covert conduct disorder symptoms and the prospective prediction of antisocial personality disorders. Journal of Personality Disorders, 28(6), pp. 864-872. doi:10.1521/pedi_2012_26_074

Rashid, T. A., y Asia, L. J. (2016). Improvement on predicting employee behaviour through intelligent techniques. IET Networks, 5(5), pp. 136-142. doi:10.1049/iet-net.2015.0106

Smith, A. D. (2005). Accountability in EDI systems to prevent employee fraud. Information Systems Management, 22(2), pp. 30-38.

Downloads

Published

2019-12-09

Issue

Section

Research papers

How to Cite

Prediction of applicants who will commit internal fraud in a company using supervised learning algorithms. (2019). Interfases, 12(012), 49-60. https://doi.org/10.26439/interfases2019.n012.4637