Predicting job abandonment through genetic algorithms and artificial neural networks

Authors

  • Gonzalo Reyes-Huertas Universidad de Lima (Perú)

DOI:

https://doi.org/10.26439/interfases2019.n012.4636

Keywords:

Artificial neural network, genetic algorithm, employee turnover, neural network architecture

Abstract

This research work aims to develop a tool to identify employees who might abandon their position, because job abandonment is considered an international problem. The proposed method consists of a genetic algorithm that allows identifying the significant variables and improving the architecture of an artificial neural network as a solution. The variables selected by the tool were similar to those collected from different studies but not all of them were considered in such studies (e.g., distance between home and workplace, and years of employment). Likewise, the variables and architecture selected by the tool allowed to predict job abandonment up to 88.92 % accuracy rate.

Downloads

Download data is not yet available.

Author Biography

  • Gonzalo Reyes-Huertas, Universidad de Lima (Perú)

    Graduado por la Carrera de Ingeniería de Sistemas de la Universidad de Lima. Se inició como desarrollador de aplicaciones móviles para dispositivos iOS en el Laboratorio de Aprendizaje en Tecnologías de Información (ITLab), de la misma institución, donde desarrolló parte de la aplicación Ulima App que logró 20 000 usuarios diarios activos. Actualmente es ingeniero iOS en Scotiabank Digital Factory, donde desarrolla la aplicación principal de Scotiabank Perú y frameworks internos. Sus áreas de interés son el desarrollo de aplicaciones iOS, arquitectura de software y algoritmos y estructuras de datos.

References

Anand, V. V., Saravanasudhan, R., y Vijesh, R. (2012). Employee attrition: A pragmatic study with reference to BPO industry. Management, 2(9), pp. 769-775. Recuperado de https://ieeexplore.ieee.org/document/6215943/

Ashok, J. (2003). A study on linkage between organizational practices and employee attrition. International Jurnal of Knowledge Management & Practice, 1(1), pp. 30-34.

Burnes, P. T. (2006). Voluntary employee turnover: Why IT professionals leave. IT Professional, 8(3), pp. 46-48. doi:10.1109/MITP.2006.78

Echegaray Calderón, O. A., y Barrios Aranibar, D. (2015). Optimal selection of factors using Genetic Algorithms and Neural Networks for the prediction of students’ academic performance. Latin America Congress on Computational Intelligence (LA-CCI), pp. 1-6. doi:10.1109/LA-CCI.2015.7435976

Ettaouil M., y Ghanou, Y. (2009). Neural architectures optimization and genetic algorithms. WSEAS Transactions on Computers, 8(3), pp. 526-537. Recuperado de http://www.wseas.us/e-library/transactions/computers/2009/31-699.pdf

Fidalgo F., y Gouveia, L. B. (2012). Turnover impact into organizational knowledge management. The case of employee turnover in Portuguese Real Estate. 6th Iberian Conference on Information Systems and Technologies (CISTI 2011), pp. 1-6.

Firth, L., Mellor, D. J., Moore, K. A., y Loquet, C. (2004). How can managers reduce employee intention to quit? Journal of Managerial Psychology, 19(2), pp. 170-187. doi:10.1108/02683940410526127

Fiszelew, A., Britos, P., Ochoa, A., Merlino, H., Fernandez, E., y García-Martínez, R. (2007) Finding optimal neural network architecture using genetic algorithms. Advances in Computer Science and Engineering Research in Computer Science, 27, pp. 15-24. Recuperado de http://www.iidia.com.ar/rgm/articulos/RCSJ-27-15-24.pdf

Flores, C. (22 de octubre de 2014). Perú tiene alta tasa de rotación de personal. Diario Correo. Recuperado de https://diariocorreo.pe/economia/peru-tiene-alta-tasa-de-rotacion-de-personal-9770/

Idrissi, M. A. J., Ramchoun, H., Ghanou, Y., y Ettaouil, M. (2016). Genetic algorithm for neural network architecture optimization. IEEE 3rd International Conference on Logistics Operations Management (GOL), pp. 1-4. doi:10.1109/GOL.2016.7731699

Islam, B., Baharudin, Z., Raza, M. Q., y Nallagownden, P. (2014). Optimization of neural network architecture using genetic algorithm for load forecasting. IEEE 5th International Conference on Intelligent and Advanced Systems (ICIAS), pp. 1-6. doi:10.1109/ICIAS.2014.6869528

Mal clima laboral genera pérdidas millonarias a las empresas (3 de mayo de 2016). La República. Recuperado de https://larepublica.pe/sociedad/936033-mal-clima-laboral-genera-perdidas-millonarias-a-las-empresas

Naciones Unidas/CEPAL (2016). Agenda 2030 y los Objetivos de Desarrollo Sostenible: una oportunidad para América Latina y el Caribe. doi:10.1017/CBO9781107415324.004

Pawar, A., y Chakravarthy, V. (2014). Factors influencing employee turnover in fusion healthcare organization. International Journal of Management Research and Reviews, 4(9), pp- 834-846.

Perú es el tercer país con la mayor rotación de personal en Latam (24 de octubre de 2017). El Portal del Capital Humano. Recuperado de http://www.infocapitalhumano.pe/recursos-humanos/noticias-y-movidas/peru-es-el-tercer-pais-con-la-mayor-rotacion-de-personal-en-latam/

Rotación laboral de ejecutivos en altos mandos alcanza el 25 %. (7 de julio de 2014). El Comercio. Recuperado de https://elcomercio.pe/economia/ejecutivos/rotacion-laboral-ejecutivos-altos-mandos-alcanza-25-346784

Sandoval, M. (27 de agosto de 2014). El Perú tiene el más alto índice de rotación laboral en Latinoamérica. El Portal del Capital Humano. Recuperado de http://www.infocapitalhumano.pe/recursos-humanos/noticias-y-movidas/el-peru-tiene-el-mas-alto-indice-de-rotacion-laboral-en-latinoamerica/

Wei, X., y Hai, L. (2007). Chinese employee’s turnover intentions in relation to organizational identification, work values, job satisfactions in service industry. IEEE International Conference on Wireless Communications, Networking and Mobile Computing, pp. 4435-4438. doi:10.1109/WICOM.2007.1095

Downloads

Published

2019-12-09

Issue

Section

Research papers

How to Cite

Predicting job abandonment through genetic algorithms and artificial neural networks. (2019). Interfases, 12(012), 32-48. https://doi.org/10.26439/interfases2019.n012.4636