Predicting job abandonment through genetic algorithms and artificial neural networks
DOI:
https://doi.org/10.26439/interfases2019.n012.4636Keywords:
Artificial neural network, genetic algorithm, employee turnover, neural network architectureAbstract
This research work aims to develop a tool to identify employees who might abandon their position, because job abandonment is considered an international problem. The proposed method consists of a genetic algorithm that allows identifying the significant variables and improving the architecture of an artificial neural network as a solution. The variables selected by the tool were similar to those collected from different studies but not all of them were considered in such studies (e.g., distance between home and workplace, and years of employment). Likewise, the variables and architecture selected by the tool allowed to predict job abandonment up to 88.92 % accuracy rate.
Downloads
References
Anand, V. V., Saravanasudhan, R., y Vijesh, R. (2012). Employee attrition: A pragmatic study with reference to BPO industry. Management, 2(9), pp. 769-775. Recuperado de https://ieeexplore.ieee.org/document/6215943/
Ashok, J. (2003). A study on linkage between organizational practices and employee attrition. International Jurnal of Knowledge Management & Practice, 1(1), pp. 30-34.
Burnes, P. T. (2006). Voluntary employee turnover: Why IT professionals leave. IT Professional, 8(3), pp. 46-48. doi:10.1109/MITP.2006.78
Echegaray Calderón, O. A., y Barrios Aranibar, D. (2015). Optimal selection of factors using Genetic Algorithms and Neural Networks for the prediction of students’ academic performance. Latin America Congress on Computational Intelligence (LA-CCI), pp. 1-6. doi:10.1109/LA-CCI.2015.7435976
Ettaouil M., y Ghanou, Y. (2009). Neural architectures optimization and genetic algorithms. WSEAS Transactions on Computers, 8(3), pp. 526-537. Recuperado de http://www.wseas.us/e-library/transactions/computers/2009/31-699.pdf
Fidalgo F., y Gouveia, L. B. (2012). Turnover impact into organizational knowledge management. The case of employee turnover in Portuguese Real Estate. 6th Iberian Conference on Information Systems and Technologies (CISTI 2011), pp. 1-6.
Firth, L., Mellor, D. J., Moore, K. A., y Loquet, C. (2004). How can managers reduce employee intention to quit? Journal of Managerial Psychology, 19(2), pp. 170-187. doi:10.1108/02683940410526127
Fiszelew, A., Britos, P., Ochoa, A., Merlino, H., Fernandez, E., y García-Martínez, R. (2007) Finding optimal neural network architecture using genetic algorithms. Advances in Computer Science and Engineering Research in Computer Science, 27, pp. 15-24. Recuperado de http://www.iidia.com.ar/rgm/articulos/RCSJ-27-15-24.pdf
Flores, C. (22 de octubre de 2014). Perú tiene alta tasa de rotación de personal. Diario Correo. Recuperado de https://diariocorreo.pe/economia/peru-tiene-alta-tasa-de-rotacion-de-personal-9770/
Idrissi, M. A. J., Ramchoun, H., Ghanou, Y., y Ettaouil, M. (2016). Genetic algorithm for neural network architecture optimization. IEEE 3rd International Conference on Logistics Operations Management (GOL), pp. 1-4. doi:10.1109/GOL.2016.7731699
Islam, B., Baharudin, Z., Raza, M. Q., y Nallagownden, P. (2014). Optimization of neural network architecture using genetic algorithm for load forecasting. IEEE 5th International Conference on Intelligent and Advanced Systems (ICIAS), pp. 1-6. doi:10.1109/ICIAS.2014.6869528
Mal clima laboral genera pérdidas millonarias a las empresas (3 de mayo de 2016). La República. Recuperado de https://larepublica.pe/sociedad/936033-mal-clima-laboral-genera-perdidas-millonarias-a-las-empresas
Naciones Unidas/CEPAL (2016). Agenda 2030 y los Objetivos de Desarrollo Sostenible: una oportunidad para América Latina y el Caribe. doi:10.1017/CBO9781107415324.004
Pawar, A., y Chakravarthy, V. (2014). Factors influencing employee turnover in fusion healthcare organization. International Journal of Management Research and Reviews, 4(9), pp- 834-846.
Perú es el tercer país con la mayor rotación de personal en Latam (24 de octubre de 2017). El Portal del Capital Humano. Recuperado de http://www.infocapitalhumano.pe/recursos-humanos/noticias-y-movidas/peru-es-el-tercer-pais-con-la-mayor-rotacion-de-personal-en-latam/
Rotación laboral de ejecutivos en altos mandos alcanza el 25 %. (7 de julio de 2014). El Comercio. Recuperado de https://elcomercio.pe/economia/ejecutivos/rotacion-laboral-ejecutivos-altos-mandos-alcanza-25-346784
Sandoval, M. (27 de agosto de 2014). El Perú tiene el más alto índice de rotación laboral en Latinoamérica. El Portal del Capital Humano. Recuperado de http://www.infocapitalhumano.pe/recursos-humanos/noticias-y-movidas/el-peru-tiene-el-mas-alto-indice-de-rotacion-laboral-en-latinoamerica/
Wei, X., y Hai, L. (2007). Chinese employee’s turnover intentions in relation to organizational identification, work values, job satisfactions in service industry. IEEE International Conference on Wireless Communications, Networking and Mobile Computing, pp. 4435-4438. doi:10.1109/WICOM.2007.1095
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under an Attribution 4.0 International (CC BY 4.0) License. that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Last updated 03/05/21