Method of natural language processing and data mining techniques applied to the classification of computer incidents
DOI:
https://doi.org/10.26439/interfases2019.n012.4635Keywords:
risk analysis, computer incidents, service desk, data mining, emergency levelAbstract
This article presents a methodology that applies natural language processing and classification algorithms by using data mining techniques, and incorporating procedures for validation and verification of significance. This is conducted according to the analysis and selection of data and results based on quality statistical analysis, which guarantees the effectiveness percentage in knowledge construction. The analysis of computer incidents within an educational institution and a standardized database of historical computer incidents collected by the Service Desk area is used as case study. Such area is linked to all information technology processes and focuses on the support requirements for the performance of employee activities. As long as users’ requirements are not fulfilled in a timely manner, the impact of incidents may give rise to work problems at different levels, making it difficult to plan or prevent incidents resolution due to their unforeseen nature.
Downloads
References
Baca, Y., y Vela, G. (2015). Diseño e implementación de procesos basados en ITIL v3 para la gestión de servicios de TI del área de Service Desk de la Facultad de Ingeniería y Arquitectura (tesis de licenciatura). Escuela Profesional de Ingeniería de Computación y Sistemas, Universidad de Lima.
Ballesteros, J., Hernández C., y Sánchez, S. (2010). Propuesta para la mejora del proceso de control de incidencias dentro de una mesa de ayuda bajo el ciclo Deming (tesis de licenciatura). Unidad Profesional Interdisciplinaria de Ingeniería y Ciencias Sociales y Administrativas, Instituto Politécnico Nacional.
Barreno, E. (2012). Análisis comparativo de modelos de clasificación en el estudio de la deserción universitaria. Interfases, (5), 45-82. doi:10.26439/interfases2012.n005.149
Corso, C., García, A., Ciceri, L., y Romero, F. (2014). Minería de datos aplicada a la detección de factores para la prevención de incidentes informáticos. XVI Workshop de Investigadores en Ciencias de la Computación (pp. 168-172). Universidad Tecnológica Nacional. Recuperado de http://sedici.unlp.edu.ar/bitstream/handle/10915/41982/Documento_completo.pdf?sequence=1
Fombona Cadavieco, J., Rodríguez Pérez, C., y Barriada Fernández, C. (2012). Gestión de incidencias informáticas: el caso de la Universidad de Oviedo y la Facultad de Formación del Profesorado. Revista de Universidad y Sociedad del Conocimiento, 9(2), 100-114. Recuperado de http://www.raco.cat/index.php/RUSC/article/view File/284627/372853
García, A., Corso, C., Gibellini, F., y Rapallini, M. (2013). Análisis de incidentes informáticos usando modelos de asociación y métodos del análisis de datos multivariante. XV Workshop de Investigadores en Ciencias de la Computación (pp. 107-111). Universidad Tecnológica Nacional. Recuperado de http://sedici.unlp.edu.ar/bitstream/handle/10915/27107/Documento_completo.pdf?sequence=1
Gupta, R., Prasad, K. H., y Mohania, M. (2008). Automating ITSM Incident Management Process. International Conference on Autonomic Computing (pp. 141-150). Chicago: IEEE. doi:10.1109/icac.2008.22
Han J., y Kamber, M. (2006). Data Mining: Concepts and Techniques. (2.ª ed.). San Francisco: Morgan Kaufmann Publishers.
Han, J., Kamber, M., y Pei, J. (2012). Data Mining. Concepts and Techniques. (3.ª ed.). Boston: Morgan Kaufmann Publishers/Elsevier.
Sharma, S. & Bhatia, S. (2016). Analysis of association rule in data mining. ICTS 16 Second International Conference on Information and Communication Technology for Competitive Strategies, Udaipur, India, March 04-05, 2016. doi:10.1145/2905055.2905238
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under an Attribution 4.0 International (CC BY 4.0) License. that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Last updated 03/05/21
