Una revisión sistemática de sistemas de generación automática de rutas

Palabras clave: rutas, planificación logística, eficiencia operativa, algoritmos híbridos, tecnologías emergentes

Resumen

La generación automática de rutas es una herramienta esencial para optimizar la logística, ya que permite reducir costos operativos y mejorar la sostenibilidad en diversos escenarios. En este artículo, se presenta una revisión sistemática de literatura sobre generación automática de rutas basada en la metodología de Kitchenham, que se estructura en tres fases: planificación, realización e informe. Mediante el análisis de artículos relevantes obtenidos de bases de datos como Scopus y ScienceDirect, se identificaron cincuenta estudios relevantes después de las etapas de cribado. Además, se obtuvieron técnicas, modelos y tecnologías avanzadas que abordan los principales desafíos de la planificación logística, incluyendo la adaptación a entornos dinámicos y la toma de decisiones en tiempo real. Los hallazgos destacaron el impacto positivo de los algoritmos híbridos y las tecnologías emergentes como el internet de las cosas y la conectividad de vehículos, lo que ha mejorado significativamente la eficiencia operativa y la sostenibilidad. Sin embargo, persisten retos en su implementación en áreas con infraestructura limitada, lo que subraya la necesidad de soluciones más accesibles y adaptativas para contextos diversos.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Gian Paul Iparraguirre Leyva, Universidad Católica Sedes Sapientiae, Perú

Estudiante de Ingeniería de Sistemas en la Universidad Católica Sedes Sapientiae. Actualmente, se desempeña como analista de networking con funciones orientadas a la gestión y soporte de infraestructura de tecnologías de la información. Cuenta con experiencia en microinformática, configuración de dispositivos de red, monitoreo de sistemas y soporte técnico especializado. Ha desarrollado investigaciones aplicadas en la generación automática de rutas para entregas integrando inteligencia artificial y modelos de optimización para la mejora de procesos logísticos. Su formación académica se complementa con conocimientos en sistemas operativos, seguridad informática y operación de centros SOC.

Marco Antonio Coral Ygnacio, Universidad Católica Sedes Sapientiae, Perú

Candidato a doctor en Ingeniería de Sistemas por la Universidad Nacional Mayor de San Marcos (UNMSM). Magíster en Ciencias en Ingeniería de Sistemas y Computación, experto en temas de transformación digital en universidades. Ha sido responsable técnico del proyecto Cero Papel en la UNMSM trabajando con sistemas de gestión documentaria con firma digital, implementación de documentos digitales (grados, títulos y otros), integración de sistemas y generación de servicios para la universidad. Ha sido jefe de la Unidad de Tecnología Educativa, jefe de la Unidad de Servidores y Sistemas de Información de la Red Telemática-UNMSM y jefe de la Oficina de Calidad y Acreditación Académica de la FISI-UNMSM, responsable de la acreditación de los programas de posgrado e implementación de la norma ISO 9001:2015.

Citas

Abdullahi, H., Reyes-Rubiano, L., Ouelhadj, D., Faulin, J., & Juan, A. A. (2021). Modelling and multi-criteria analysis of the sustainability dimensions for the green vehicle routing problem. European Journal of Operational Research, 292(1), 143-154. https://doi.org/10.1016/j.ejor.2020.10.028

Arifuddin, A., Utamima, A., Mahananto, F., Vinarti, R. A., & Fernanda, N. (2024). Optimizing the capacitated vehicle routing problem at PQR company: A genetic algorithm and Grey Wolf Optimizer approach. Procedia Computer Science, 234, 420-427. https://doi.org/10.1016/j.procs.2024.03.023

Chen, Z., Hajidavalloo, M. R., Li, Z., & Zheng, M. (2022). A cascaded learning framework for road profile estimation using multiple heterogeneous vehicles. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 144(10), 104501. https://doi.org/10.1115/1.4055041

Comert, S. E., & Yazgan, H. R. (2023). A new approach based on hybrid ant colony optimization-artificial bee colony algorithm for multi-objective electric vehicle routing problems. Engineering Applications of Artificial Intelligence, 123, 106375. https://doi.org/10.1016/j.engappai.2023.106375

Cui, S., Sun, Q., & Zhang, Q. (2022). A time-dependent vehicle routing problem for instant delivery based on memetic algorithm. Computational Intelligence and Neuroscience, 2022, Artículo 5099008. https://doi.org/10.1155/2022/5099008

D’Emidio, M., Delfaraz, E., Di Stefano, G., Frittella, G., & Vittoria, E. (2024). Route planning algorithms for fleets of connected vehicles: State of the art, implementation, and deployment. Applied Sciences (Switzerland), 14(7), 2884. https://doi.org/10.3390/app14072884

Dutta, P., Khatua, S., & Choudhury, S. (2023). Fast move: A prioritized vehicle rerouting strategy in smart city. Vehicular Communications, 44, 100666. https://doi.org/10.1016/j.vehcom.2023.100666

Guan, X., & Li, G. (2023). Optimization of cold chain logistics vehicle transportation and distribution model based on improved ant colony algorithm. Procedia Computer Science, 228, 974-982. https://doi.org/10.1016/j.procs.2023.11.128

Hmamed, H., Benghabrit, A., Cherrafi, A., & Hamani, N. (2023). Achieving a sustainable transportation system via economic, environmental, and social optimization: A comprehensive AHP-DEA approach from the waste transportation sector. Sustainability (Switzerland), 15(21), 15372. https://doi.org/10.3390/su152115372

Ho, F., Goncalves, A., Rigault, B., Geraldes, R., Chicharo, A., Cavazza, M., & Prendinger, H. (2022). Multi-agent path finding in unmanned aircraft system traffic management with scheduling and speed variation. IEEE Intelligent Transportation Systems Magazine, 14(5), 8-21. https://doi.org/10.1109/MITS.2021.3100062

Hou, B., Zhang, K., Gong, Z., Li, Q., Zhou, J., Zhang, J., & De la Fortelle, A. (2023). SoC-VRP: A deep-reinforcement-learning-based vehicle route planning mechanism for service-oriented cooperative ITS. Electronics (Switzerland), 12(20), 4191. https://doi.org/10.3390/electronics12204191

Hu, H., Qin, H., Xu, G., Huang, N., & He, P. (2024). Column generation based hybrid optimization method for last-mile delivery service with autonomous vehicles. Advanced Engineering Informatics, 61, 102549. https://doi.org/10.1016/j.aei.2024.102549

Hulagu, S., & Celikoglu, H. B. (2022). Environment-friendly school bus routing problem with heterogeneous fleet: A large-scale real case. IEEE Transactions on Intelligent Transportation Systems, 23(4), 3461-3471. https://doi.org/10.1109/TITS.2020.3036696

Idrissi, A., Benabbou, R., Benhra, J., & Haji, M. El. (2024). Smart waste collection based on vehicle routing optimization: Case of Casablanca city. Procedia Computer Science, 236, 194-201. https://doi.org/10.1016/j.procs.2024.05.021

İslim, R. B., & Çatay, B. (2024). An effective matheuristic approach for solving the electric traveling salesperson problem with time windows and battery degradation. Engineering Applications of Artificial Intelligence, 132, 107943. https://doi.org/10.1016/j.engappai.2024.107943

Jiang, Z., Chen, W., Zheng, X., & Gao, F. (2024). Research on vehicle path planning of automated guided vehicle with simultaneous pickup and delivery with mixed time windows. IET Collaborative Intelligent Manufacturing, 6(2), e12105. https://doi.org/10.1049/cim2.12105

Kawabe, T., Nishi, T., & Liu, Z. (2023). Flexible route planning for multiple mobile robots by combining Q-Learning and graph search algorithm. Applied Sciences (Switzerland), 13(3), 1879. https://doi.org/10.3390/app13031879

Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009). Systematic literature reviews in software engineering - A systematic literature review. Information and Software Technology, 51(1), 7-15. https://doi.org/10.1016/j.infsof.2008.09.009

Küp, E. T., Cebeci, S., Bayram, B., Aydın, G., Bozkaya, B., & Akhavan-Tabatabaei, R. (2024). An integrated framework for dynamic vehicle routing problems with pick-up and delivery time windows and shared fleet capacity planning. Symmetry, 16(4), 505. https://doi.org/10.3390/sym16040505

Li, J., Tian, S., Zhang, N., Liu, G., Wu, Z., & Li, W. (2023). Optimization strategy for electric vehicle routing under traffic impedance guidance. Applied Sciences (Switzerland), 13(20), 11474. https://doi.org/10.3390/app132011474

Li, T., He, Z., & Wu, Y. (2022). An integrated route planning approach for driverless vehicle delivery system. PeerJ Computer Science, 8, e1170. https://doi.org/10.7717/PEERJ-CS.1170

Liang, S., Song, B., & Xue, D. (2021). Landing route planning method for micro drones based on hybrid optimization algorithm. Biomimetic Intelligence and Robotics, 1, 100003. https://doi.org/10.1016/j.birob.2021.100003

Liu, R., & Wang, N. (2022). Data-driven bus route optimization algorithm under sudden interruption of public transport. IEEE Access, 10, 5250-5263. https://doi.org/10.1109/ACCESS.2022.3140947

Liu, X., Ma, J., Chen, D., & Zhang, L. Y. (2021). Real-time unmanned aerial vehicle cruise route optimization for road segment surveillance using decomposition algorithm. Robotica, 39(6), 1007-1022. https://doi.org/10.1017/S0263574720000867

Liu, Y., Zhang, H., Xu, T., & Chen, Y. (2022). A heuristic algorithm based on travel demand for transit network design. Sustainability (Switzerland), 14(17), 11097. https://doi.org/10.3390/su141711097

Mahdavi, L., Mansour, S., & Sajadieh, M. S. (2022). Sustainable multi-trip periodic redesign-routing model for municipal solid waste collection network: The case study of Tehran. Enviromental Science and Pollution Research, 29(24), 35944-35963. https://doi.org/10.21203/rs.3.rs-256948/v1

Martins, L. D. C., Tordecilla, R. D., Castaneda, J., Juan, A. A., & Faulin, J. (2021). Electric vehicle routing, arc routing, and team orienteering problems in sustainable transportation. Energies, 14(16), 5131. https://doi.org/10.3390/en14165131

Mojtahedi, M., Fathollahi-Fard, A. M., Tavakkoli-Moghaddam, R., & Newton, S. (2021). Sustainable vehicle routing problem for coordinated solid waste management. Journal of Industrial Information Integration, 23, 100220. https://doi.org/10.1016/j.jii.2021.100220

Nickkar, A., & Lee, Y. J. (2023). Optimal integrated single-framework algorithm for the multi-level school bus network problem. Algorithms, 16(11), 528. https://doi.org/10.3390/a16110528

Nouicer, D., Msadaa, I. C., & Grayaa, K. (2023). A novel routing solution for EV fleets: A real-world case study leveraging double DQNs and graph-structured data to solve the EVRPTW problem. IEEE Access, 11, 122116-122127. https://doi.org/10.1109/ACCESS.2023.3327324

Pal, S. (2023). Steer towards sustainability: The roadmap to cost and eco-efficient transportation via AI-enhanced routing. International Journal for Research in Applied Science and Engineering Technology, 11(12), 874-878. https://doi.org/10.22214/ijraset.2023.57467

Pan, S., Liao, H., Zheng, G., Huang, Q., & Shan, M. (2024). Cold chain distribution route optimization for mixed vehicle types of fresh agricultural products considering carbon emissions: A study based on a survey in China. Sustainability (Switzerland), 16(18), 8207. https://doi.org/10.3390/su16188207

Pan, Y., Li, L., Qin, J., Chen, J. J., & Gardoni, P. (2024). Unmanned aerial vehicle-human collaboration route planning for intelligent infrastructure inspection. Computer-Aided Civil and Infrastructure Engineering, 39(14), 2074-2104. https://doi.org/10.1111/mice.13176

Pustokhina, I. V., Pustokhin, D. A., Lydia, E. L., Elhoseny, M., & Shankar, K. (2021). Energy efficient neuro-fuzzy cluster based topology construction with metaheuristic route planning algorithm for unmanned aerial vehicles. Computer Networks, 196, 108214. https://doi.org/10.1016/j.comnet.2021.108214

Raeesi, R., & Zografos, K. G. (2022). Coordinated routing of electric commercial vehicles with intra-route recharging and en-route battery swapping. European Journal of Operational Research, 301(1), 82-109. https://doi.org/10.1016/j.ejor.2021.09.037

Ramirez, J. E., Santiago, C. M., & Kamiyama, A. (2022). Route planning using wireless sensor network for garbage collection in COVID-19 pandemic. IJACSA) International Journal of Advanced Computer Science and Applications, 13(4). https://dx.doi.org/10.14569/IJACSA.2022.01304105

Ramirez-Robles, E., Starostenko, O., & Alarcon-Aquino, V. (2024). Real-time path planning for autonomous vehicle off-road driving. PeerJ Computer Science, 10. https://doi.org/10.7717/PEERJ-CS.2209

Sang, W., Yue, Y., Zhai, K., & Lin, M. (2024). Research on AGV path planning integrating an improved A* algorithm and DWA algorithm. Applied Sciences (Switzerland), 14(17), 7551. https://doi.org/10.3390/app14177551

Sathyamurthy, E., Herrmann, J. W., & Azarm, S. (2024). Hybrid metaheuristic approaches for the multi-depot rural postman problem with rechargeable and reusable vehicles. IEEE Access, 12, 86523-86540. https://doi.org/10.1109/ACCESS.2024.3414331

Shi, J., Zhang, J., Lei, H., Liu, Z., & Wang, R. (2023). Joint mission and route planning of unmanned air vehicles via a learning-based heuristic. Journal of Systems Engineering and Electronics, 34(1), 81-98. https://doi.org/10.23919/JSEE.2023.000005

Shi, Y., Liu, W., & Zhou, Y. (2023). An adaptive large neighborhood search based approach for the vehicle routing problem with zone-based pricing. Engineering Applications of Artificial Intelligence, 124, 106506. https://doi.org/10.1016/j.engappai.2023.106506

Sundarraj, S., Reddy, R. V. K., Basam, M. B., Lokesh, G. H., Flammini, F., & Natarajan, R. (2023, 7 de agosto). Route planning for an autonomous robotic vehicle employing a weight-controlled particle swarm-optimized Dijkstra algorithm. IEEE Access, 11, 92433-92442. https://doi.org/10.1109/ACCESS.2023.3302698

Szwarc, K., Nowakowski, P., & Boryczka, U. (2021). An evolutionary approach to the vehicle route planning in e-waste mobile collection on demand. Soft Computing, 25(8), 6665-6680. https://doi.org/10.1007/s00500-021-05665-w

Toathom, T., & Champrasert, P. (2024). Vehicle route planning for relief item distribution under flood uncertainty. Applied Sciences (Switzerland), 14(11). https://doi.org/10.3390/app14114482

Tsolakis, N., Zissis, D., Papaefthimiou, S., & Korfiatis, N. (2022). Towards AI driven environmental sustainability: an application of automated logistics in container port terminals. International Journal of Production Research, 60(14), 4508-4528. https://doi.org/10.1080/00207543.2021.1914355

Wang, X., Liu, Z., & Li, X. (2023). Optimal delivery route planning for a fleet of heterogeneous drones: A rescheduling-based genetic algorithm approach. Computers and Industrial Engineering, 179. https://doi.org/10.1016/j.cie.2023.109179

Yan, L., Tang, Y., Peng, C., Cai, Y., Zhang, W., & Wang, J. (2023, 22 de diciembre). Ecological and real-time route selection method for multiple vehicles in urban road network. Journal of Advanced Transportation, 2023, Artículo 3770800. https://doi.org/10.1155/2023/3770800

Zhang, H., Gan, X., Li, S., & Chen, Z. (2022). UAV safe route planning based on PSO-BAS algorithm. Journal of Systems Engineering and Electronics, 33(5), 1151-1160. https://doi.org/10.23919/JSEE.2022.000111

Zhang, M. Y., Yang, S. C., Feng, X. J., Chen, Y. Y., Lu, J. Y., & Cao, Y. G. (2022). Route planning for autonomous driving based on traffic information via multi-objective optimization. Applied Sciences (Switzerland), 12(22), 11817. https://doi.org/10.3390/app122211817

Zhao, L., Li, F., Sun, D., & Zhao, Z. (2024). An improved ant colony algorithm based on Q-learning for route planning of autonomous vehicle. International Journal of Computers, Communications and Control, 19(3), 1-15. https://doi.org/10.15837/ijccc.2024.3.5382

Zheng, C., Gu, Y., Shen, J., & Du, M. (2021). Urban logistics delivery route planning based on a single metro line. IEEE Access, 9, 50819-50830. https://doi.org/10.1109/ACCESS.2021.3069415

Zhou, X., Wang, J., Liu, W., Pan, J., Zhao, T., Jiang, F., & Li, R. (2024). An intelligent connected vehicle material distribution route model based on k-center spatial cellular clustering and an improved cockroach optimization algorithm. Symmetry, 16(6), 749. https://doi.org/10.3390/sym16060749

Zhou, Y., Shu, J., Zheng, X., Hao, H., & Song, H. (2022). Real-time route planning of unmanned aerial vehicles based on improved soft actor-critic algorithm. Frontiers in Neurorobotics, 16. https://doi.org/10.3389/fnbot.2022.1025817

Publicado
2025-07-31
Cómo citar
Iparraguirre Leyva, G. P., & Coral Ygnacio, M. A. (2025). Una revisión sistemática de sistemas de generación automática de rutas. Interfases, (021), 179-207. https://doi.org/10.26439/interfases2025.n021.7797
Sección
Artículos de revisión