Interrelaciones entre el mantenimiento productivo total, jidoka y la sostenibilidad económica: validación empírica de un modelo conceptual integrado
DOI:
https://doi.org/10.26439/ing.ind2025.n049.8063Palabras clave:
TPM, jidoka, industria manufacturera, procesos industriales, producción eficiente, desarrollo sostenible, modelos de ecuaciones estructuralesResumen
Este estudio desarrolla y valida empíricamente un modelo conceptual integrado que examina las relaciones causales entre el mantenimiento productivo total (TPM), jidoka y la sostenibilidad económica (ECSU) en la industria manufacturera. Basado en la teoría de recursos y capacidades y la teoría de sistemas, el modelo propone que TPM influye directamente en jidoka y ECSU, mientras que jidoka media la relación TPM-ECSU. Utilizando modelado de ecuaciones estructurales (SEM-PLS) y datos de 357 encuestas en la industria maquiladora de Ciudad Juárez, México, se confirmó que TPM impacta positivamente a jidoka (β=٠,632, p<0,001) y ECSU (β=0,340, p<0,001), mientras que jidoka también contribuye a ECSU (β=0,358, p<0,001). Además, jidoka media el efecto de TPM en ECSU (β=0,226), aumentando el efecto total a β=0,566. Los análisis gráficos revelaron patrones no lineales en las relaciones. Estos hallazgos destacan las sinergias entre TPM y jidoka para maximizar beneficios económicos sostenibles en entornos de manufactura esbelta.
Descargas
Referencias
Ahuja, I. P. S., & Khamba, J. S. (2008). Total productive maintenance implementation in a manufacturing organisation. International Journal of Productivity and Quality Management, 3(3), 360–381. https://doi.org/10.1504/IJPQM.2008.017504
Arief, I., Hasan, A., Putri, N. T., & Rahman, H. (2023). Literature reviews of RBV and KBV theories reimagined: A technological approach using text analysis and Power BI visualization. International Journal on Informatics Visualization, 7(4), 2532–2542. https://dx.doi.org/10.62527/joiv.7.4.1940
Balouei Jamkhaneh, H., Khazaei Pool, J., Khaksar, S. M. S., Arabzad, S. M., & Verij Kazemi, R. (2018). Impacts of computerized maintenance management system and relevant supportive organizational factors on total productive maintenance. Benchmarking, 25(7), 2230–2247. https://doi.org/10.1108/BIJ-05-2016-0072
Bekar, E. T. (2023). Efficiency measurement based on novel performance measures in Total Productive Maintenance (TPM) Using a fuzzy integrated COPRAS and DEA method. Frontiers in Manufacturing Technology, 3, article 1072777. https://doi.org/10.3389/fmtec.2023.1072777
Cantini, A., Ahmadi, A., Presciuttini, A., & Portioli-Staudacher, A. (2024). Jidoka advancements and applications for empowering manufacturing and operations: a bibliometric review. In XXIX AIDI Summer School Francesco Turco – Industrial systems engineering. https://www.summerschool-aidi.it/images/papers/session_3_2024/1108_Cantini.pdf
Chaabane, K., Schutz, J Dellagi, S., & Trabelsi, W.. (2021). Analytical evaluation of TPM performance based on an economic criterion. Journal of Quality in Maintenance Engineering, 27(2), 413–429. https://doi.org/10.1108/JQME-08-2019-0085
Cua, K. O., McKone, K. E., & Schroeder, R. G. (2001). Relationships between implementation of TQM, JIT, and TPM and manufacturing performance. Journal of Operations Management, 19(6), 675–694. https://doi.org/10.1016/S0272-6963(01)00066-3
Danguche, I., & Taifa, I. W. R. (2023). Factors Influencing Total Productive Maintenance Implementation for Thermal Generation Plants. Tanzania Journal of Engineering and Technology, 42(1), 97–112 https://journals.udsm.ac.tz/index.php/tjet/article/view/9156
Díaz-Reza, J. R., García-Alcaraz, J. L., Figueroa, L. J. M., Vidal, R. P., & Muro, J. C. S. D. (2022). Relationship between lean manufacturing tools and their sustainable economic benefits. International Journal of Advanced Manufacturing Technology, (123), 1269–1284. https://doi.org/10.1007/s00170-022-10208-0
Gelaw, M. T., Azene, D. K., & Berhan, E. (2024). Assessment of critical success factors, barriers and initiatives of total productive maintenance (TPM) in selected Ethiopian manufacturing industries. Journal of Quality in Maintenance Engineering, 30(1), 51–80. https://doi.org/10.1108/JQME-11-2022-0073
Hair, J., & Alamer, A. (2022). Partial Least Squares Structural Equation Modeling (PLS-SEM) in second language and education research: Guidelines using an applied example. Research Methods in Applied Linguistics, 1(3), 100027. https://doi.org/10.1016/j.rmal.2022.100027
Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2017). A primer on partial least Squares structural equation modeling (PLS-SEM) (2nd ed.). Sage.
Hallioui, A., Herrou, B., Katina, P. F., Santos, R. S., Egbue, O., Jasiulewicz-Kaczmarek, M., Soares, J. M., & Marques, P. C. (2023). A review of Sustainable Total Productive Maintenance (STPM). Sustainability, 15(16), 12362. https://doi.org/10.3390/su151612362
Kock, N. (2021). WarpPLS user manual: Version 7.0. ScriptWarp Systems.
Kock, N. (2023). Contributing to the success of PLS in SEM: An action research perspective. Communications of the Association for Information Systems, 52(1), 730–734. https://aisel.aisnet.org/cais/vol52/iss1/48/
Kock, N., & Hadaya, P. (2018). Minimum sample size estimation in PLS-SEM: The inverse square root and gamma-exponential methods. Information Systems Journal, 28(1), 227–261. https://doi.org/10.1111/isj.12131
Koteswarapavan, C., & Pattanaik, L. N. (2024). A novel tool-input-process-output (TIPO) framework for upgrading to lean 4.0. International Journal of Production Management and Engineering, 12(1), 65–77. https://doi.org/10.4995/ijpme.2024.19723
Martínez-Loya, V., Díaz-Reza, J. R., García-Alcaraz, J. L., & Tapia-Coronado, J. Y. (2018). SEM: A global technique—Case applied to TPM. In J. L. García-Alcaraz, G. Alor-Hernández, A. A. Maldonado-Macías, & C. Sánchez-Ramírez (Eds.), New perspectives on applied industrial tools and techniques (pp. 3–22). Springer International Publishing.
Mendes, D., Gaspar, P. D., Charrua-Santos, F., & Navas, H. V. G. (2023). Integrating TPM and Industry 4.0 to increase the availability of industrial assets: A case sttudy on a conveyor belt. Processes, 11(7), 1956. https://doi.org/10.3390/pr11071956
Nakajima, S. (1989). TPM development program: Implementing total productive maintenance. Productivity Press.
Oroye, O. A., Sylvester, B. O., & Farayibi, P. K. (2022). Total productive maintenance and companies performance: A case study of fast moving consumer goods companies. Jurnal Sistem dan Manajemen Industri, 6(1), 23–32. https://doi.org/10.30656/jsmi.v6i1.4185
Parsazadeh, N., Ali, R., Rezaei, M., & Tehrani, S. Z. (2018). The construction and validation of a usability evaluation survey for mobile learning environments. Studies in Educational Evaluation, (58), 97–111. https://doi.org/10.1016/j.stueduc.2018.06.002
Pascal, V., Toufik, A., Manuel, A., Florent, D., & Frédéric, K. (2019). Improvement indicators for total productive maintenance policy. Control Engineering Practice, (82), 86–96. https://doi.org/10.1016/j.conengprac.2018.09.019
Pramod, V. R., Devadasan, S. R., & Jagathy Raj, V. P. (2010). Quality improvement in engineering education through the synergy of TPM and QFD. International Journal of Management in Education, 4(1), 1–24. https://doi.org/10.1504/IJMIE.2010.029879
Quiroz-Flores, J. C., & Vega-Alvites, M. L. (2022). Review lean manufacturing model of production management under the preventive maintenance approach to improve efficiency in plastics industry SMES: A case study. South African Journal of Industrial Engineering, 33(2), 143–156. https://doi.org/10.7166/33-2-2711
Rada, E. C., Nicolae, I., Zerbes, M.-V., Tulbure, A., Karaeva, A., Torretta, V., & Giurea, R. (2024). Implementation of a performance management system for environmental sustainability in an industrial organization. Journal of Physics Conference Series, 2857(1), 012030. https://doi.org/10.1088/1742-6596/2857/1/012030
Samadhiya, A., Agrawal, R., Kumar, A., & Garza?Reyes, J. A. (2023). Blockchain technology and circular economy in the environment of total productive maintenance: A natural resource-based view perspective. Journal of Manufacturing Technology Management, 34(2), 293–314. https://doi.org/10.1108/JMTM-08-2022-0299
Shingo, S., & Dillon, A. (1989). A study of the Toyota Production System: From an industrial engineering viewpoint (1st ed.). Routledge. https://doi.org/10.4324/9781315136509
Tamás, P., Tollár, S., Illés, B., Bányai, T., Tóth, Á. B., & Skapinyecz, R. (2020). Decision support simulation method for process improvement of electronic product testing systems. Sustainability, 12(7), 3063. https://doi.org/10.3390/su12073063
Valverde-Curi, H., De-La-Cruz-Angles, A., Cano-Lazarte, M., Alvarez, J. M., & Raymundo-Ibañez, C. (2019). Lean management model for waste reduction in the production area of a food processing and preservation SME. In The 5th International Conference Proceeding on Industrial and Business Engineering. https://doi.org/10.1145/3364335.3364378
Womack, J. P., Jones, D., & Ross, D. (2017). La máquina que cambió el mundo: la historia de la producción lean, el arma secreta de Toyota que revolucionó la industria mundial del automóvil. Profit.
Zhang, X. Z. & Chin, J. F. (2021). Implementing total productive maintenance in a manufacturing small or medium-sized enterprise. Journal of Industrial Engineering and Management, 14(2), 152. https://doi.org/10.3926/jiem.3286
Zhou, Z. R., Xiong, X. Q., Wang, J. X., & Bai, H. T. (2022). Equipment management of customized furnishing manufacturers based on total productive maintenance. Chinese Journal of Wood Science and Technology, 36(3), 20–25. https://dx.doi.org/10.12326/j.2096-9694.2021169









