Comparison of three permutation test algorithms applied to the multivariate means of two independent samples

Authors

  • Jaime Carlos Porras Cerrón Universidad Nacional Agraria La Molina (Perú)

DOI:

https://doi.org/10.26439/ing.ind2019.n037.4545

Abstract

The objective of this research was to compare three permutation test algo­rithms. Data scenarios obtained through the Monte Carlo simulation were proposed and the suggested algorithms were applied to each of them. The results showed a test power greater than 0,85. The first algorithm based on the Hotelling’s T2 presented the highest test power. The implementation of the algorithms was carried out using the R statistical program.

Downloads

Download data is not yet available.

Author Biography

  • Jaime Carlos Porras Cerrón, Universidad Nacional Agraria La Molina (Perú)

    Ingeniero en Estadística e Informática por la Universidad Nacional Agraria La Molina. Magister in Science en Matemática con mención en Estadística por la Universidad de Puerto Rico. Estudios de Doctorado en Administración en la Universidad Nacional Federico Villarreal. Docente principal del Departamento Académico de Estadística e Informática de la Universidad Nacional Agraria La Molina. Publicó el libro Pruebas no paramétricas usando R (2017).

References

Blair, C., Higgins, J., Karniski ,W. y Kromrey, J. (2010). A Study of Multivariate Permutation Tests Which May Replace Hotelling’s T2 Test in Prescribed Circumstances. Journal Multivariate Behavioral Research 29(2), pp. 141-163. doi: 10.1207/ s15327906mbr2902_2

Butar, F. y Park, J. (2008). Permutation Test for Comparing Two Populations. Journal of Mathematical Sciences & Mathematics Education 3(2), pp. 19-30.

Chung, E. y Romano, J. (2011). Asymptotically valid and exact permutation tests based on twosample U-statistics. (Technical report No. 2011-09). Stanford: Stanford University. Recuperado de https://statistics.stanford.edu/sites/default/files/2011-09.pdf

Chung, E. y Romano, J. (2013). Multivariate and Multiple Permutation Test. (Technical report No.2013-05). Stanford: Stanford University. Recuperado de https://statistics. stanford.edu/sites/g/files/sbiybj6031/f/2013-05_0.pdf

Efron, B. y Tibshirani, R. (2011): An Introduction to the Bootstrap. Nueva York: Chapman & Hall/CRC.

Einsporn, R. y Habtzghi, D. (2013): Combining Paired and Two-Sample Data Using a Permutation. Journal of Data Science 11, pp. 767-779.

Higgins, J. (2004). An introduction to modern nonparametric statistics. Londres: Thomson Learning.

Samuh, M. (2017). Ranked Set Two Sample Permutation Test. Statistica 3, pp. 237-249. The R Project for Statistical Computing (3.6) [Software]. (2019). Recuperado de https://

www.r-project.org/

Downloads

Published

2019-10-29

Issue

Section

Quality and environment

How to Cite

Porras Cerrón, J. C. (2019). Comparison of three permutation test algorithms applied to the multivariate means of two independent samples. Ingeniería Industrial, 37(037), 113-124. https://doi.org/10.26439/ing.ind2019.n037.4545