Risk analysis in a multilevel supply model
DOI:
https://doi.org/10.26439/ing.ind2019.n037.4541Abstract
This research proposes stress tests to evaluate a set of hypothetical crisis scenarios linked with periods of greater volatility in a sample of commercial transactions among three companies from a multilevel supply model. The solution identifies cost-related levels of impact for a set of hypothetical scenarios associated with parameters such as levels of reliability and volatility in a risky time horizon.
Downloads
References
Abdymomunov, A. y Gerlach, J. (2014). Stress testing interest rate risk exposure. Journal of Banking & Finance 49, pp. 287-301. doi: 10.1016/j.jbankfin.2014.08.013
Alexander, C. y Sheedy, E. (2008). Developing a stress testing framework based on market risk models. Journal of Banking & Finance 32(10), pp. 2220-2236. doi:10.1016/j. jbankfin.2007.12.041
Altiok, T. y Melamed, B. (2007). Simulation Modeling and Analysis with ARENA. Amsterdam: Elsevier.
Boucher, C. M., Daníelsson, J., Kouontchou, P. S. y Maillet, B. B. (2014). Risk models-atrisk. Journal of Banking & Finance 44, pp. 72-92.
Buchmeister, B., Pavlinjek, J., Palcic, I. y Polajnar, A. (2008). Bullwhip effect problem in supply chains. Advances in Production Engineering and Management 3(1), pp. 45-55.
Bueno-Solano, A. y Cedillo-Campos, M. G. (2014). Dynamic impact on global supply chains performance of disruptions propagation produced by terrorist acts. Transportation Research Part E: Logistics and Transportation Review 61, pp. 1-12. doi: 10.1016/j.tre.2013.09.005
Chopra, S. y Sodhi, M. S. (2014). Reducing the Risk of Supply Chain Disruptions. MIT Sloan Management Review 55(3), pp. 73-80.
Escalante, J., Monsreal, I. y Casanovas, J. (Eds.). (2016). Logistics Practices in Small and Medium Enterprises (SME): Risk Context Survey for Hurricanes. En: Hernández, G. A., Sánchez-Ramírez, C. y García-Alcaraz, J. L. (Eds.), Handbook of Research on Managerial Strategies for Achieving Optimal Performance in Industrial Processes. Hershey: IGI Global, pp. 76-99.
Flood, M. D. y Korenko, G. G. (2015). Systematic scenario selection: stress testing and the nature of uncertainty. Quantitative Finance 15(1), pp. 43-59.
González Diez, V. M., Verner, D., Corrales, M. E., Puerta, J. M., Mendieta Umaña, M. P., Morales, C., … L’Hoste, M. (2014). Climate change at the IDB: Building resilience and reducing emissions. Washington: Banco Interamericano de Desarrollo.
Heckmann, I., Comes, T. y Nickel, S. (2014). A Critical Review on Supply Chain Risk -Definition, Measure and Modeling. Omega 52, pp. 119-132. doi: 10.1016/j. omega.2014.10.004
Hernández, G. A., Sánchez-Ramírez, C. y García-Alcaraz, J. L. (2016). Handbook of Research on Managerial Strategies for Achieving Optimal Performance in Industrial Processes. Hershey: IGI Global.
Hussain, M. (2012). Quantifying the impact of a supply chain’s design parameters on the bullwhip effect using simulation and Taguchi design of experiments. International Journal of Physical Distribution & Logistics Management 42(10), pp. 947-968. Instituto Nacional de Estadística y Geografía de México (INEGI) (2009). Micro, pequeña, mediana y gran empresa. Estratificación de los establecimientos. Censos económicos. Recuperado de https://www.inegi.org.mx/default.html
Instituto Nacional de Estadística y Geografía de México (INEGI) (2014). Censos económicos 2014. Recuperado de https://www.inegi.org.mx/default.html
Jabareen, Y. (2013). Planning the resilient city: Concepts and strategies for coping with climate change and environmental risk. Cities 31, pp. 220-229. doi: 10.1016/j. cities.2012.05.004
Jorion, P. (2010). Risk Management. Annual Review of Financial Economics 2, pp. 347-365
Kelton, W. D., Sadowski, R. P. y Sturrock, D. T. (2008). Simulación con software Arena. México: McGraw-Hill.
Melnyk, S. A., Rodrigues, A. y Ragatz, G. L. (2009). Using simulation to investigate supply chain disruptions. En: Zsidisin, G. A. y Ritchie, B. (Eds.). Supply Chain Risk. Boston: Springer, pp. 103-122.
Meucci, A. (2010). Historical scenarios with fully flexible probabilities. GARP Risk Professional, pp. 47-51.
Olson, D. L. y Wu, D. D. (2017). Enterprise Risk Management Models. Berlín: Springer
Rubinstein, R. Y. y Kroese, D. P. (2016). Simulation and the Monte Carlo method. New Jersey: John Wiley & Sons.
Rusman, M. y Shimizu, Y. (2013). Effect of Continuity Rate on Multistage Logistic Network Optimization under Disruption Risk. Industrial Engineering and Management Systems 12(2), pp. 74-84. doi: 10.7232/iems.2013.12.2.074
Shekh, S. y Marsh, L. (2016). The Twenty-Ninth International Flairs Conference. Edimburgo.








