Diseño y construcción de un sistema de control y seguimiento basado en servomotores para optimizar el ángulo de incidencia de la radiación solar
Resumen
El proyecto de investigación consiste en el diseño y construcción de un prototipo de un sistema de seguimiento solar de dos ejes, el cual se basa en la automatización mediante un software de programación Arduino IDE con fotorresistores para posicionamiento del módulo fotovoltaico, con el fin de optimizar la captación de radiación solar. El resultado del desarrollo de la prueba experimental ha permitido concluir que la mayor generación de energía se ha logrado usando un sensor ACS712, con el que se obtuvieron mediciones de mayor radiación solar entre las 10:00 a. m. y las 5:00 p. m. Asimismo, entre las 11:45 a. m. y la 1:00 p. m., se produce una corriente que oscila entre 0,60 A y 0,62 A lográndose el rendimiento óptimo. Con el sistema de posición fija se alcanza 0,60 A a las 10:45 a. m. y se mantiene constante entre 0,60 A y 0,62 A hasta la 1:45 p.m. La potencia promedio obtenida para el panel en posición fija es de 5,37 W durante 7 horas, mientras que al aplicar el sistema de seguimiento solar se alcanzó 6,1 W, con lo que se produce un incremento del 13,67 %.
Descargas
Citas
Barragán, E., Zalamea, E., Terrados, J., & Vanegas, Pablo. (2019). Factores que influyen en la selección de energías renovables en la ciudad. EURE (Santiago), 45(134), 259-277. https://dx.doi.org/10.4067/S0250-71612019000100259
Chakraborty, S., Das, S., Sadhu, P. K., & Sastry, O. S. (2015). Design and experimental execution of a microcontroller (μC)‐based smart dual‐axis automatic solar tracking system. Energy Science & Engineering, 3(6), 558-564. http://dx.doi.org/10.1002/ese3.102
Dalmazzo-Bermejo, E., Valenzuela-Klagges, B., & Espinoza-Brito, L. (2017). Producción de energía renovable no tradicional en América Latina: economía y políticas públicas. Apuntes. Revista de Ciencias Sociales, 44(81), 67-87. http://dx.doi.org/10.21678/apuntes.81.806
El Hammoumi, A. E., Motahhir, S., Ghzizal, A. E., Chalh, A., & Derouich, A. (2018). A simple and low‐cost active dual‐axis solar tracker. Energy Science & Engineering, 6(5), 607-620. http://dx.doi.org/10.1002/ese3.236
Feron, S., & Cordero, R. R. (2018). Is Peru prepared for large-scale sustainable rural electrification? Sustainability, 10(5), 1683. http://dx.doi.org/10.3390/su10051683
Guaita-Pradas, I., & Blasco-Ruiz, A. (2020). Analyzing profitability and discount rates for solar PV plants. A Spanish case. Sustainability, 12(8), 3157. http://dx.doi.org/10.3390/su12083157
Mansouri, A., Krim, F., & Khouni, Z. (2018). Design of a prototypical dual-axis tracker solar panel controlled by geared dc servomotors. Scientia Iranica, 25(6), 3542-3558. http://dx.doi.org/10.24200/sci.2018.20045
Qamar, U. H. (2019). Design and implementation of solar tracker to defeat energy crisis in Pakistan. International Journal of Engineering and Manufacturing, 9(2), 31. http://dx.doi.org/10.5815/ijem.2019.02.03
Rivera, H., Quintana, M., & Teixeira, V. (2016). Implementación de un sistema fotovoltaico en el distrito de San Borja, para aprovechar la energía solar durante los meses de verano. Tecnia, 26(1), 115. https://doi.org/10.21754/tecnia.v26i1.13
Talamon, A., Papp, R. V., Vokony, I., & Hartmann, B. (2019). Global solar energy trends and potential of building sector in Hungary. Interdisciplinary Description of Complex Systems, 17(1-A), 51-57. http://dx.doi.org/10.7906/indecs.17.1.7
Umbarila Valencia, L. P., Alfonso Moreno, F. L., & Rivera Rodríguez, J. C. (2015). Importancia de las energías renovables en la seguridad energética y su relación con el crecimiento económico. Revista de Investigación Agraria y Ambiental, 6(2), 231-241. https://doi.org/10.22490/21456453.1419