Sistema de monitoreo de ambiente para el control de las condiciones ambientales de las granjas acuícolas de la selva del Perú basado en Internet de las Cosas

Palabras clave: Internet de las Cosas, Red inalámbrica de Sensores, Sensores

Resumen

La industria alimenticia de la acuicultura está creciendo a un ritmo tan acelerado que está por alcanzar a la pesca en toneladas producidas. Sin embargo, en el Perú, la acuicultura se encuentra poco desarrollada: su participación en el sector es del 1,4 %, y cuenta con productores poco especializados, que residen en zonas alejadas con baja posibilidad de acceso tecnológico. Por ello, en este trabajo se plantea un sistema de monitoreo de ambiente semiautónomo dirigido exclusivamente a la zona oriental del Perú, capaz de medir temperatura (agua y aire), oxígeno disuelto, pH y luminosidad. Con este fin se genera un nodo de medición de parámetros que captura las condiciones ambientales y las envía a un gateway a través de la red LoRa. En un despliegue de casi cinco días, con más de 69 000 datos capturados, el sistema demostró que tiene la capacidad de medir las condiciones ambientales de forma precisa y autónoma con tendencias normales para la ubicación y hora de medición. Asimismo, se pudieron identificar ciertas correlaciones entre los datos obtenidos, como la temperatura del ambiente sobre el oxígeno disuelto, que tiene un coeficiente de correlación de 0,81. Por otro lado, el uso de la red LoRa requiere aplicar cierto tipo de control de la integridad de la información, ya que esta no viene por defecto. Finalmente, se concluye que el sistema desarrollado sí permite monitorear las condiciones ambientales en la selva peruana, brindando al productor la capacidad de visualizar su información en tiempo real de forma local y remota.

Descargas

La descarga de datos todavía no está disponible.

Citas

Abbink, W., Blanco Garcia, A., Roques, J. A. C., Partridge, G. J., Kloet, K., & Schneider, O. (2012). The effect of temperature and pH on the growth and physiological response of juvenile yellowtail kingfish Seriola lalandi in recirculating aquaculture systems. Aquaculture, 330-333, 130-135. https://doi.org/10.1016/j.aquaculture.2011.11.043

Ai-Thinker. (2017). Ra-02 LoRa Product Specification V1.1. https://docs.ai-thinker.com/_media/lora/docs/c048ps01a1_ra-02_product_specification_v1.1.pdf

Arduino. (s. f.). Arduino Nano | Arduino Official Store. Arduino.cc. Reuperado el 10 de mayo del 2021, de https://store.arduino.cc/usa/arduino-nano

Banco Central de Reserva del Perú. (2020). Series trimestrales. https://estadisticas.bcrp.gob.pe/estadisticas/series/trimestrales/pbi-millones-de-soles-constantes-de-2007

Blanchon, B. (2021). JSON library for Arduino and embedded C++. Simple and efficient. GitHub. https://github.com/bblanchon/ArduinoJson

Bormann, M. E. C., & Keranen, A. (2014). Terminology for constrained-node networks. Ietf.org. https://tools.ietf.org/html/rfc7228#section-4

Burton, M. (2021). Arduino plug and go library for the Maxim (previously Dallas) DS18B20 (and similar) temperature ICs. GitHub. https://github.com/milesburton/Arduino-Temperature-Control-Library

Campbell, J. W. (1973). Nitrogen excretion. En C. L. Prosser (Ed.), Comparative animal physiology (pp. 279-316). W. B. Saunders Company.

Dorsemaine, B., Gaulier, J.-P., Wary, J.-P., Kheir, N., & Urien, P. (2015). Internet of Things: A definition & taxonomy. En 2015 9th International Conference on next Generation Mobile Applications, Services and Technologies (pp. 72-77). https://doi.org/10.1109/ngmast.2015.71

Encinas, C., Ruiz, E., Cortez, J., & Espinoza, A. (2017). Design and implementation of a distributed IoT system for the monitoring of water quality in aquaculture. En 2017 Wireless Telecommunications Symposium (WTS) (pp. 1-7). https://doi.org/10.1109/wts.2017.7943540

Fondo Nacional de Desarrollo Pesquero. (2004). Manual de cultivo de tilapia. http://www2.produce.gob.pe/RepositorioAPS/3/jer/ACUISUBMENU4/manual_tilapia.pdf

Grados, B., & Bedon, H. (2020). Software components of an IoT monitoring platform in Google Cloud Platform: A descriptive research and an architectural proposal.En M. Botto-Tobar, M. Zambrano Vizuete, P. Torres-Carrión, S. Montes León, G. Pizarro Vásquez & B. Durakovic (Eds.), Applied technologies. ICAT 2019. Communications in computer and information science (vol. 1193, pp. 153-167). https://doi.org/10.1007/978-3-030-42517-3_12

Hoganson, C. W., & Babcock, G. T. (1997). A metalloradical mechanism for the generation of oxygen from water in photosynthesis. Science, 277(5334), 1953-1956. https://doi.org/10.1126/science.277.5334.1953

Instituto Nacional de Estadística e Informática. (2020). Producto bruto interno trimestral [Informe técnico].https://www.inei.gob.pe/media/MenuRecursivo/boletines/boletin_pbi_trimestral_iit_2020.pdf

Instituto Nacional de Estadística e Informática. (2021). Estadísticas de las tecnologías de información y comunicación en hogares [Informe técnico]. https://www.inei.gob.pe/media/MenuRecursivo/boletines/02-informe-tecnico-tic-i-trimestre-2021.pdf

Jawad, H., Nordin, R., Gharghan, S., Jawad, A., & Ismail, M. (2017). Energy-efficient wireless sensor networks for precision agriculture: A review. Sensors, 17(8), 1781. https://doi.org/10.3390/s17081781

Kang, M.-S., Jung, Y.-G., & Jang, D.-H. (2017). A study on the search of optimal aquaculture farm condition based on machine learning. The Journal of the Institute of Internet Broadcasting and Communication, 17(2), 135-140. https://doi.org/10.7236/jiibc.2017.17.2.135

Kramer, D. L. (1987). Dissolved oxygen and fish behavior. Environmental Biology of Fishes, 18(2), 81-92. https://doi.org/10.1007/bf00002597

Laws, C. (2021, 17 de enero). An Arduino library for the digital light sensor breakout boards containing the BH1750FVI IC. GitHub. https://github.com/claws/BH1750

Manahan, S. E. (2000). Environmental chemistry (7.a ed.). Lewis Publishers.

Ministerio de la Producción. (2018). Sistema Nacional de Innovación en Pesca y Acuicultura. Fundamentos y propuesta 2017-2022. https://pnipa.gob.pe/wp-content/uploads/2019/02/PESCA-Y-ACUICULTURA-3-1.pdf

Mistry, S. (2021). An Arduino library for sending and receiving data using LoRa radios. GitHub. https://github.com/sandeepmistry/arduino-LoRa

Organización de las Naciones Unidas para la Alimentación y la Agricultura. (1988). Rural aquaculture: Overview and framework for country reviews. http://www.fao.org/3/x6941e/x6941e04.htm

Organización de las Naciones Unidas para la Alimentación y la Agricultura. (2020). El estado mundial de la pesca y la acuicultura 2020. La sostenibilidad en acción. https://doi.org/10.4060/ca9229es

Raj, A. (2019, 7 de mayo). LoRa with Raspberry Pi – Peer to Peer Communication with Arduino. CircuitDigest. https://circuitdigest.com/microcontroller-projects/raspberry-pi-with-lora-peer-to-peer-communication-with-arduino

Raju, K. R. S. R., & Varma, G. H. K. (2017). Knowledge based real time monitoring system for aquaculture using IoT. En 2017 IEEE 7th International Advance Computing Conference (IACC) (pp. 318-321). https://doi.org/10.1109/iacc.2017.0075

Rayes, A., & Salam, S. (2016). The things in IoT: Sensors and actuators. En Internet of Things from hype to reality (pp. 57-77). https://doi.org/10.1007/978-3-319-44860-2_3

Ríos Julcapoma, M., & Yauri Rodríguez, R. (2017). Internet de las cosas en el monitoreo de la calidad del agua para acuicultura en la Amazonía. Instituto de investigaciones de la Amazonía Peruana; Universidad Nacional de Ingeniería.

Salim, T. I., Haiyunnisa, T., & Alam, H. S. (2016). Design and implementation of water quality monitoring for eel fish aquaculture. En 2016 International Symposium on Electronics and Smart Devices (ISESD) (pp. 208-213). https://doi.org/10.1109/isesd.2016.7886720

Sehrawat, D., & Gill, N. S. (2019). Smart sensors: Analysis of different types of IoT sensors. En 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI) (pp. 523-528). https://doi.org/10.1109/icoei.2019.8862778

Servicio Nacional de Meteorología e Hidrología del Perú. (2021). Promedio de temperatura normal para Pucallpa. https://www.senamhi.gob.pe/?p=pronostico-detalle-turistico&localidad=0024

Shi, B., Sreeram, V., Zhao, D., Duan, S., & Jiang, J. (2018). A wireless sensor network-based monitoring system for freshwater fishpond aquaculture. Biosystems Engineering, 172, 57-66. https://doi.org/10.1016/j.biosystemseng.2018.05.016

Studt, J., Pollard T., James, R., Trewitt, G., Dangel, J., Lovato, G., Stoffregen, P., Roberts, S., Sikken, B., Tillotson, M., Butcher, K., Clark, R., & Nystrom, L. (2019). Library for Dallas/Maxim 1-Wire Chips. GitHub. https://github.com/PaulStoffregen/OneWire

Subasinghe, R. P. (2005). Epidemiological approach to aquatic animal health management: Opportunities and challenges for developing countries to increase aquatic production through aquaculture. Preventive Veterinary Medicine, 67(2-3), 117-124. https://doi.org/10.1016/j.prevetmed.2004.11.004

The Raspberry Pi Foundation. (2021). Raspberry Pi 4 Model B specifications – Raspberry Pi. Raspberry Pi. https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/

Weather Works. (2020, 3 de septiembre). How to measure temperature correctly. https://weatherworksinc.com/news/temperature-measurement

Yim, D., Chung, J., Cho, Y., Song, H., Jin, D., Kim, S., Ko, S., Smith, A., & Riegsecker, A. (2018). An experimental LoRa performance evaluation in tree farm. En 2018 IEEE Sensors Applications Symposium (SAS) (pp. 1-6). https://doi.org/10.1109/sas.2018.8336764

Zhu, X., Li, D., He, D., Wang, J., Ma, D., & Li, F. (2010). A remote wireless system for water quality online monitoring in intensive fish culture. Computers and Electronics in Agriculture, 71, S3-S9. https://doi.org/10.1016/j.compag.2009.10.004

Publicado
2022-12-23
Cómo citar
Lino Villaran, A. E. (2022). Sistema de monitoreo de ambiente para el control de las condiciones ambientales de las granjas acuícolas de la selva del Perú basado en Internet de las Cosas. Interfases, 16(016), 140-167. https://doi.org/10.26439/interfases2022.n016.6026
Sección
Artículos de investigación