Sentiment analysis of written news using a model based on the long short-term memory neural Network to determine if positive news improve people’s mood

Authors

  • Gustavo Adolfo Reyes-Paredes Universidad de Lima, Perú

DOI:

https://doi.org/10.26439/ciis2019.5500

Keywords:

machine learning, sentiment analysis, recurrent neural network, long short-term memory, psychological and social well-being

Abstract

It is a fact that the paradigm of distributing negative news to the population is the most accepted worldwide. A large amount of research has been done to determine the effects of this paradigm on the population and, in all cases, it has been shown to be harmful to the health and behavior of people. Therefore, this paper aims to demonstrate that the opposite paradigm, the distribution of positive news, generates an improvement in the health, behavior and mood of the population. To achieve this, a model based on the long short-term memory neural network has been developed in order to analyze sentiments caused by news written in Spanish. Moreover, an experiment was conducted to determine people’s mood after having read positive news.

Downloads

Download data is not yet available.

References

Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I., Bergeron, A., Bouchard, N., Warde-Farley, D., y Bengio, Y. (2012). Theano: new features and speed improvements. Deep Learning Workshop, NIPS 2012.

Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J. P., Warde-Farley, D., y Bengio, Y. (2010). Theano: a CPU and GPU math expression compiler in Python. Proceedings of the Python for Scientific Computing Conference (SciPy 2010).

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297-334. doi:10.1007/BF02310555.

Easton, V. J., y McColl, J. H. (2007). Statistics glossary: Sampling. Recuperado de http://www.stats.gla.ac.uk/steps/glossary/sampling.html

Famili, A., Shen, W.-M., Weber, R., y Simoudis, E. (1997). Data preprocessing and intelligent data analysis. Intelligent Data Analysis, 1(1), 3-23.

Fredrickson, B. L. (2001). The role of positive emotions in positive psychology: The broadenand-build theory of positive emotions. American Psychologist, 56(3), 218-226.

Gers, F., Schraudolph, N. N., y Schmidhuber, J. (2002). Learning precise timing with LSTM recurrent networks. Journal of Machine Learning Research, 3(1), 115-143.

Gers, F. A., Schmidhuber, J., y Cummins, F. A. (2000). Learning to forget: Continual prediction with LSTM. Neural Computation, 12(10), 2451-2471.

Hatemi, P. K., Funk, C. L., Medland, S. E., Maes, H. M., Silberg, J. L., Martin, N. G., y Eaves, L. J. (2009). Genetic and Environmental Transmission of Political Attitudes Over a Life Time. Journal of Politics, 71(3), 1141-1156.

Hochreiter, S., y Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780.

Kingma, D. P., y Ba, J. (2015). Adam: A method for stochastic optimization. CoRR, abs/1412.6980.

Klevecka, I., y Lelis, J. (2008). Pre-processing of input data of neural networks: The case of forecasting telecommunication network traffic. Telektronikk: Telecommunications Forecasting (Special issue in co-operation with International Institute of Forecasters), 104(3/4): 168-178.

Johnston, W. M., y Davey, G. C. (1997). The psychological impact of negative TV news bulletins: The catastrophizing of personal worries. British Journal of Psychology, 88, 85-91. doi:10.1111/j.20448295.1997.tb02622.x

Tieleman, T., y Hinton, G. (2012). Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 4(2), 26-31,

Trochim, W. K. (2007). Sampling. Research methods knowledge base. Recuperado de http://www.socialresearchmethods.net/kb/sampling.php

Watson, D., Clark, L. A., y Tellegen, A. (1988). Development and validation of brief measures of positive and neative affect: The PANAS Scales. Journal of Personality and Social Psychology, 54(6), 1063-1070. doi:10.1037/0022-3514.54.6.1063

Zhang, Z., Ma, L., Li, Z., y Wu, C. (2018). Normalized direction-preserving Adam. arXiv:1709.04546v2

Downloads

Published

2020-07-15

How to Cite

Sentiment analysis of written news using a model based on the long short-term memory neural Network to determine if positive news improve people’s mood. (2020). Actas Del Congreso Internacional De Ingeniería De Sistemas, 49-61. https://doi.org/10.26439/ciis2019.5500