Review of obfuscated malware detection algorithms based on machine learning
DOI:
https://doi.org/10.26439/ciis2022.6076Keywords:
malware, obfuscation, detection, machine learningAbstract
Malware developers increasingly evolve their techniques to effectively attack the system, one of these techniques is code obfuscation that makes it difficult to detect malware in the traditional mechanisms used by current antiviruses. Given this, it is proposed to review articles related to the detection of obfuscated malware with machine learning to choose the best analysis techniques for this type of malware and use the best algorithms for future experimentation with them.
Downloads
References
Ashik, M., Jyothish, A., Anandaram, S., Vinod, P., Mercaldo, F., Martinelli, F., & Santone, A. (2021). Detection of malicious software by analyzing distinct artifacts using machine learning and deep learning algorithms. Electronics, 10(14), 1694. https://doi.org/10.3390/electronics10141694
Duo, W., Zhou, M., & Abusorrah, A. (2022). A survey of cyber attacks on cyber physical systems: Recent advances and challenges. IEEE/CAA Journal of Automatica Sinica, 9(5), 784-800. https://doi.org/10.1109/JAS.2022.105548
Fortinet. (2022, 8 de febrero). América Latina sufrió más de 289 mil millones de intentos de ciberataques en 2021 [Comunicado de prensa]. https://www.fortinet.com/lat/corporate/about-us/newsroom/press-releases/2022/fortiguard-labs-reporte-ciberataques-america-latina-2021
International Business Machines. (2022).X-Force Threat Intelligence Index 2022.IBM Security X-Force. https://www.ibm.com/security/data-breach/threat-intelligence/
Liu, K., Xu, S., Xu, G., Zhang, M., Sun, D., & Liu, H. (2020). A review of android malware detection approaches based on machine learning. IEEE Access, 8, 124579-124607. https://doi.org/10.1109/ACCESS.2020.3006143
Lee, D., Jeon, G., Lee, S., & Cho, H. (2022). Deobfuscating mobile malware for identifying concealed behaviors. Computers, Materials and Continua, 72(3), 5909-5923. http://dx.doi.org/10.32604/cmc.2022.026395
Mimura, M., & Ito, R. (2022). Applying NLP techniques to malware detection in a practical environment. International Journal of Information Security, 21(2), 279-291. https://doi.org/10.1007/s10207-021-00553-8
Ouk, P. C., & Pak, W. (2022). High performance classification of android malware using ensemble machine learning. Computers, Materials and Continua, 72(1), 381-398. http://dx.doi.org/10.32604/cmc.2022.024540
Sun, B., Takahashi, T., Ban, T., & Inoue, D. (2021). Detecting Android malware and classifying its families in large-scale datasets. ACM Transactions on Management Information Systems (TMIS), 13(2), 1-21. https://doi.org/10.1145/3464323
Surendran, R., & Thomas, T. (2022). Detection of malware applications from centrality measures of syscall graph. Concurrency and Computation: Practice and Experience, 34(10), e6835. https://doi.org/10.1002/cpe.6835
Wu, B., Chen, S., Gao, C., Fan, L., Liu, Y., Wen, W., & Lyu, M. R. (2021). Why an Android app is classified as malware: Toward malware classification interpretation. ACM Transactions on Software Engineering and Methodology (TOSEM), 30(2), 1-29. https://doi.org/10.1145/3423096