Hidden Markov models for the development of a speech-aid system for people with dysar-thria

Authors

  • Clara Mercedes Guevara Vélez Universidad Nacional Pedro Ruiz Gallo. Lambayeque, Perú

DOI:

https://doi.org/10.26439/ciis2018.5468

Keywords:

dysarthria, automatic speech recognition, HTK Toolkit, Hidden Markov Models (HMM), communication level

Abstract

The present paper describes the design and development of an automatic recognizer of speech in Spanish and a graphical interface for its use; the system as a whole will be called Speech Help System (SAH). It is intended to perform supporting functions in the communication level of people with dysarthria disorder. For the System Recognition function, the HTK Toolkit library was used; the acoustic modeling technique being the Hidden Markov Models (HMM). In tests with a vocabulary of five words, there was an increase in communication level of 46.67 %, and a voice recognition rate of 65 %. These results compared the accuracy of the SAH to the accuracy of human recognition.

Downloads

Download data is not yet available.

References

Adams, C. (17 de marzo de 2017). Explaining the different types of voice recognition. Recuperado de https://www.thoughtco.com/types-of-voice-recognition-1205856

Maggiolo, M. (2017). Test de articulación a la repetición (TAR): Un legado de la profesora fonoaudióloga Edith Schwalm. Revista Chilena de Fonoaudiología 16. https://doi.org/10.5354/0719-4692.2017.47557

Ministerio de Salud-Minsa (2016). Datos estadísticos sobre incapacidad. Recuperado de https://www.inei.gob.pe/estadísticas/índice-tematico/discapacidad-7995

Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Liu, X., ..., Valtchev, V. (2002). TheHTK Book. Cambridge University Engineering Department 3, p. 175.

Downloads

Published

2021-10-11

How to Cite

Hidden Markov models for the development of a speech-aid system for people with dysar-thria. (2021). Actas Del Congreso Internacional De Ingeniería De Sistemas, 141-153. https://doi.org/10.26439/ciis2018.5468