Predictive model for determining students’ graduation from engineering undergraduate programs using data mining techniques
DOI:
https://doi.org/10.26439/ciis2018.5467Keywords:
predictive model, data mining, graduates, engineering, UTNAbstract
Engineering plays a fundamental role for the economic development and social welfare of a country. For this reason, the National Government promoted in 2012 the “Plan
Estratégico de Formación de Ingenieros 2012-2016 (PEFI)”, aiming to increase the number of graduates in engineering careers, in order to improve industrial development, productive innovation and economic expansion of Argentina. The purpose of this work is to build a predictive model through data mining techniques that allow, on one hand, determine the number of students who can graduate in engineering careers at UTN Facultad Regional San Francisco, and, on the other hand, identify patterns that may affect graduation. The results of this project will represent a contribution for the area of academic management, specifically for planning, monitoring and control keeping of engineering student cohorts.
Downloads
References
Bohórquez, K., y Torres, J. (2016). Cómo la ingeniería puede ayudar a la Sociedad. Recuperado de https://es.calameo.com/read/0048672043c00a6d40983
Colegio de Ingenieros de la Provincia de Buenos Aires. (2016). ¿Por qué faltan ingenieros? Recuperado de http://www.colegioingenieros2.org.ar/web/index.php/novedades/archivo-de-novedades/porque-faltan-ingenieros
Fernández, M. (24 de enero del 2018). Egresan 8 mil ingenieros por año frente a 34 mil graduados de sociales, abogacía y psicología. Recuperado de https://www.infobae.com/educacion/2018/01/24/psicologos-y-abogados-pero-no-ingenieros-en-algunas-disciplinas-clave-se-reciben-menos-de-25-alumnos/
Fischer, E. (2012). Modelo para la automatización del proceso de determinación de riesgo de deserción en estudiantes universitarios. Tesis de maestría. Universidad de Chile. Recuperado de http://repositorio.uchile.cl/bitstream/handle/2250/111188/cf-fischer_ea.pdf?sequence=1
Goicochea, A. (2009). CRISP-DM: Una metodología para proyectos de minería de datos (artículo de blog). Recuperado de https://anibalgoicochea.com/2009/08/11/crisp-dm-una-metodologia-para-proyectos-de-mineria-de-datos/
La Red, D., Karanik, M., Giovannini, M. y Scappini, R. (2009). Modelos predictivos y técnicas de minería de datos para la identificación de factores asociados al rendimiento académico de alumnos universitarios. XI Workshop de Investigadores en Ciencias de la Computación: WICC 2009, 7-8 de mayo. San Juan: Universidad Nacional de San Juan. Recuperado de http://sedici.unlp.edu.ar/handle/10915/ 53320
Naciones Unidas (1987). Día mundial de la población. Recuperado de http://www.un.org/es/events/populationday
Pérez, M. (2015). Minería de datos a través de ejemplos. México. Alfaomega.
Porcel, E., Dapozo, G. y López, M. (2016). Hacia un modelo predictivo de rendimiento académico utilizando minería de datos en la UTN-FRRe. XVIII Workshop de Investigadores en Ciencias de la Computación: WICC 2016, 14-15 de abril. Concordia: Universidad Nacional de Entre Ríos. Recuperado de http://sedici.unlp.edu.ar/handle/10915/19846
Secretaría de Políticas Universitarias del Ministerio de Educación (2012). Plan Estratégico de Formación de Ingenieros (PEFI). Recuperado de http://pefi.siu.edu.ar/
UTN Facultad Regional Buenos Aires (5 de junio de 2014). La UTN forma más del 40% de los ingenieros que se gradúan en el país. Recuperado de https://www.frba.utn.edu.ar/dia-de-la-ingenieria-la-utn-forma-mas-del-40-de-los-ingenieros-que-se-graduan-en-el-pais/
Valía, L., Rostagno, J., Berto, E., Boero, D., Zelko, K., Viscusso, S., …, Amar, E. (2017). Modelo de deserción universitaria en los primeros años de la Carrera Ingeniería en Sistemas de Información de la Universidad Tecnológica Nacional Facultad Regional Rosario. Congreso Nacional de Ingeniería Informática. Sistemas de Información: CONAIISI 2017, 2 de noviembre. Santa Fe: Universidad Tecnológica Nacional.