Production of cellobiose from the partial enzymatic hydrolysis of rice husk cellulose
DOI:
https://doi.org/10.26439/ing.ind2024.n47.7211Keywords:
disaccharides, rice hulls, parboiled rice, glucosidases, cellulose, hydrolysis, enzymesAbstract
The aim of the research was to soften rice husk by hydrothermal and alkaline pretreatments. Temperature was applied at 121 °C for three time periods (15, 30 and 45 minutes) and with NaOH in three concentrations (0,5, 1 and 1,5 %), it was stirred at 120 rpm for one hour, to adjust to pH 4,8; 20 % HCl was added, and 30 FPU of the enzyme β-glucosidase was added and stirred at 120 rpm at 50 °C for 144 hours. The application of 121 °C for 45 minutes achieved a 34,62 ± 0,79 % partial hydrolysis of cellulose to cellobiose and 18,14 ± 0,09 % total hydrolysis of cellulose to glucose and in the hydrolysates where it was pretreated with sodium hydroxide at 1,5 %, 8,39 ± 0,79 % cellobiose and 46,64 ± 0,30 % glucose were reached. The application of hydrothermal pretreatment favors the partial hydrolysis of cellulose to cellobiose.
Downloads
References
Adler, A., Kumaniaev, I., Karacic, A., Baddigam, K., Hanes, R., Subbotina, E., Bartling, A., Huertas-Alonso, A., Moreno, A., Håkansson, H., Mathew, A., Beckham, G., & Samec, J. (2022). Lignin-first biorefining of Nordic poplar to produce cellulose fibers could displace cotton production on agricultural lands. Joule, 6(8), 1845-1858. https://doi.org/10.1016/j.joule.2022.06.021
Austad, A. (2018). Enzymatic conversion of cotton textiles [Tesis de posgrado no publicada]. Norwegian University of Life Sciences. https://nmbu.brage.unit.no/nmbu-xmlui/bitstream/handle/11250/2567315/Austad2018.pdf
Ávila, P., Silva, M., Martins, M., & Goldbeck, R. (2021). Cello-oligosaccharides production from lignocellulosic biomass and their emerging prebiotic applications. World Journal of Microbiology and Biotechnology, 37, 73 https://doi.org/10.1007/s11274-021-03041-2
Chen, P., Shrotri, A., & Fukuoka, A. (2021). Synthesis of cello-oligosaccharides by depolymerization of cellulose: A review. Applied Catalysis A: General, 621. https://doi.org/10.1016/j.apcata.2021.118177
De Oliveira, J., Bruni, G., Oliveira, K., Mello, S., Silveira, G., Guerra, A., & Da Rosa, E. (2017). Cellulose fibers extracted from rice and oat husks and their application in hydrogel. Food Chemistry, 221, 153-160. https://doi.org/10.1016/j.foodchem.2016.10.048
Eliche-Quesada, D., Felipe-Sesé, M., López-Pérez, J., & Infantes-Molina, A. (2017). Characterization and evaluation of rice husk ash and wood ash in sustainable clay matrix bricks. Ceramics International, 43(1), 463-475. https://doi.org/10.1016/j.ceramint.2016.09.181
Huang, G., Peng, W., Yang, S., & Yang, C. (2018). Delignification kinetic modeling of NH4OH-KOH-AQ pulping for bagasse. Industrial Crops and Products, 123, 740-745. https://doi.org/10.1016/j.indcrop.2018.07.040
Iftikhar, M., Asghar, A., Ramzan, N., Sajjadi, B., & Chen, W. (2019). Biomass densification: Effect of cow dung on the physicochemical properties of wheat straw and rice husk based biomass pellets. Biomass and Bioenergy, 122, 1-16. https://doi.org/10.1016/j.biombioe.2019.01.005
Kim, D., Park, H., Jung, Y., Sukyai, P., & Kim, H. (2019). Pretreatment and enzymatic saccharification of oak at high solids loadings to obtain high titers and high yields of sugars. Bioresource Technology, 284, 391-397. https://doi.org/10.1016/j.biortech.2019.03.134
Kumar, J., Saini, R., & Tewari, L. (2015). Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: Concepts and recent developments. 3 Biotech, 5, 337-353. https://doi.org/10.1007/s13205-014-0246-5
Kumar, P., Barrett, D., Delwiche, M., & Stroeve, P. (2009). Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production. Industrial & Engineering Chemistry Research, 48(8), 3713-3729. https://doi.org/10.1021/ie801542g
Lebaz, N., Cockx, A., Spérandio, M., Liné, A., & Morchain, J. (2016). Application of the Direct Quadrature Method of Moments for the modelling of the enzymatic hydrolysis of cellulose: II. Case of insoluble substrate. Chemical Engineering Science, 149, 322-333. https://doi.org/10.1016/j.ces.2016.04.029
Li, J., Li, S., Fan, C., & Yan, Z. (2012). The mechanism of poly (ethylene glycol) 4000 effect on enzymatic hydrolysis of lignocellulose. Colloids and Surfaces B: Biointerfaces, 89, 203-210. https://doi.org/10.1016/j.colsurfb.2011.09.019
Méndez-Líter, J., Gil-Muñoz, J., Nieto-Domínguez, M., Barriuso, J., De Eugenio, L., & Martínez, M. (2017). A novel, highly efficient β-glucosidase with a cellulose-binding domain: Characterization and properties of native and recombinant proteins. Biotechnology for Biofuels, 10, 1-15. https://doi.org/10.1186/s13068-017-0946-2
Naqvi, S., Uemura, Y., & Yusup, S. (2014). Catalytic pyrolysis of paddy husk in a drop type pyrolyzer for bio-oil production: The role of temperature and catalyst. Journal of Analytical and Applied Pyrolysis, 106, 57-62. https://doi.org/10.1016/j.jaap.2013.12.009
New, E., Wu, TY, Tien, C., Poon, Z., Loow, Y., Wei, L., Procentese, A., Siow, L., Teoh, W., Nik Daud, N., Jahim, J., & Mohammad, A. (2019). Potential use of pure and diluted choline chloride-based deep eutectic solvent in delignification of oil palm fronds. Process Safety and Environmental Protection, 123, 190-198. https://doi.org/10.1016/j.psep.2018.11.015
Ouyang, J., Dong, Z, Song, X., Lee, X., Chen, M., & Yong, Q. (2010). Improved enzymatic hydrolysis of microcrystalline cellulose (Avicel PH101) by polyethylene glycol addition. Bioresource Technology, 101(17), 6685-6691. https://doi.org/10.1016/j.biortech.2010.03.085
Parisutham, V., Chandran, S., Mukhopadhyay, A., Lee, S., & Keasling, J. (2017). Intracellular cellobiose metabolism and its applications in lignocellulose-based biorefineries. Bioresource Technology, 239, 496-506. https://doi.org/10.1016/j.biortech.2017.05.001
Rabek, J. (1980). Experimental methods in polymer chemistry: Physical principles and applications. John Wiley & Sons Ltd.
Resch, M., Baker, J., & Decker, S. (2015). Low solids enzymatic saccharification of lignocellulosic biomass. Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory. https://www.nrel.gov/docs/fy15osti/63351.pdf
Siccama, J., Oudejans, R., Zhang, L., Kabel, M., & Schutyser, M. (2022). Steering the formation of cellobiose and oligosaccharides during enzymatic hydrolysis of asparagus fibre. LWT, 160, artículo 113273 https://doi.org/10.1016/j.lwt.2022.113273
Silva, G., Couturier, M., Berrin, J.-G., Buléon, A., & Rouau, X. (2012). Effects of grinding processes on enzymatic degradation of wheat straw. Bioresource Technology, 103(1), 192-200. https://doi.org/10.1016/j.biortech.2011.09.073
Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2012). Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory. https://www.nrel.gov/docs/gen/fy13/42618.pdf
Soltani, N., Bahrami, A., Pech-Canul, M., & González, L. (2015). Review on the physicochemical treatments of rice husk for production of advanced materials. Chemical Engineering Journal, 264, 899-935. https://doi.org/10.1016/j.cej.2014.11.056
Wu, J., Wu, Y., Yang, F., Tang, C., Huang, Q., & Zhang, J. (2019). Impact of delignification on morphological, optical and mechanical properties of transparent wood. Composites Part A: Applied Science and Manufacturing, 117, 324-331. https://doi.org/10.1016/j.compositesa.2018.12.004
Wu, W., Hildebrand, A., Kasuga, T., Xiong, X., & Fan, Z. (2013). Direct cellobiose production from cellulose using sextuple beta-glucosidase gene deletion Neurospora crassa mutants. Enzyme and Microbial Technology, 52(3), 184-189. https://doi.org/10.1016/j.enzmictec.2012.12.010
Yaddanapudi, H., Hickerson, N., Saini, S., & Tiwari, A. (2017). Fabrication and characterization of transparent wood for next generation smart building applications. Vacuum, 146, 649-654. https://doi.org/10.1016/j.vacuum.2017.01.016
Yu, Y., Zeng, Y., Zuo, J., Ma, F., Yang, X., Zhang, X., & Wang, Y. (2013). Improving the conversion of biomass in catalytic fast pyrolysis via white-rot fungal pretreatment. Bioresource Technology, 134, 198-203. https://doi.org/10.1016/j.biortech.2013.01.167
