Artificial light simulator for solar panels: design and construction in Peru

Authors

DOI:

https://doi.org/10.26439/ing.ind2024.n47.7174

Keywords:

renewable energy sources, light sources, simulation, solar panels, lighting

Abstract

The objective of this research was to design and construct an artificial light machine that simulates the solar illuminations of the coast, highlands, and jungle of Peru, evaluating its impact on solar panels. The methodology included the construction of the machine at the University of Lima and tests with a module composed of an artificial light source, a solar panel, a measurement module, and an ammeter clamp. Tests were conducted varying the illumination to simulate the conditions of the different regions of Peru. The results obtained were 4,8; 7,2 and 4,0 kWh/m² for the simulations of the coast, highlands, and jungle, respectively. The research concluded that it is feasible to develop a solar lighting source that improves the efficiency of solar panels and allows working under stationary conditions. However, it is necessary to increase the number of tests and improve their precision for a more objective evaluation of their practical utility.

Downloads

Download data is not yet available.

Author Biographies

  • William Fernando Fernández Goicochea, Universidad de Lima, Facultad de Ingeniería Industrial, Lima, Perú

    Magíster en Ingeniería Industrial por la Universidad Ricardo Palma, Lima, Perú. Ingeniero electrónico por la Universidad Nacional de Ingeniería, Lima, Perú, especializado en automatización industrial en plantas industriales. Desde el año 2001, se desempeña como docente universitario en la Universidad de Lima, Perú, en la especialidad de Ingeniería Industrial, donde trabaja en los Laboratorios de Ingeniería Eléctrica, de Máquinas e Instrumentos y el Laboratorio CIM.

  • Mario Dayvid Carbajal Ccoyllo, Pontificia Universidad Católica de Río de Janeiro, Departamento de Ingeniería Química, Materiales y Procesos Ambientales, Río de Janeiro, Brasil

    Ingeniero químico por la Universidad Nacional Mayor de San Marcos, Perú. Actualmente, es becario del Programa de Recursos Humanos de la Agencia Nacional del Petróleo, Gas Natural y Biocombustibles (ANP-PRH) en Brasil, con especialización en Nanotecnología y Nuevos Materiales por la Pontificia Universidad Católica de Río de Janeiro. Posee una amplia experiencia en los sectores minero, textil y energético, además de un sólido historial en laboratorios de ensayo e investigación y desarrollo. Autor de la publicación “AZ31 Mg foams coated with collagen solutions: Corrosion evaluation in a simulated environment of physiological conditions” en la prestigiosa revista Macromolecular Symposia.

References

Al-Dousari, A., Al-Nassar, W., Al-Hemoud, A., Alsaleh, A., Ramadan, A., Al-Dousari, N., & Ahmed, M. (2019). Solar and wind energy: Challenges and solutions in desert regions. Energy, 176, 184-194. https://doi.org/10.1016/j.energy.2019.03.180

Arias, R., Rodas, N., & Valverde, L. (2022, 11-13 de agosto). Evaluation of on-grid renewable energy system in a Peruvian small industry [Presentación de escrito]. 2022 IEEE XXIX International Conference on Electronics, Electrical Engineering and Computing (INTERCON), Lima, Perú. https://doi.org/10.1109/INTERCON55795.2022.9870149

Carvalho Neto, J. (2023). Performance analysis of silicon technologies photovoltaic cells using artificial light source in different spectra. IEEE Sensors Journal, 23(9), 9972-9980. https://doi.org/10.1109/JSEN.2023.3263139

Craciun, O., Radu, D., & Bacha, S. (2009, 28 de junio - 2 de julio). Halogen lamp modeling for low voltage power systems transient analyses [Sesión de conferencia]. 2009 IEEE Bucharest PowerTech, Bucarest, Rumania. https://doi.org/10.1109/PTC.2009.5282028

Fiorella Representaciones S. A. C. (s. f.). Tubo cuadrado de acero ASTM A500. Recuperado el 5 de abril de 2024 de https://www.fiorellarepre.com.pe/FichaTecnica/803012.pdf

Hudisteanu, S., Chereches, C., Turcanu, F., Taranu, N., Verdes, M., Ancas, A., Hudisteanu, I., Ungureanu, D., & Polcovnicu, R. (2022). Solar radiation simulation device for investigation of thermal and photovoltaic panels. International Journal of Modern Manufacturing Technologies, 14(3), 76-85. https://doi.org/10.54684/ijmmt.2022.14.3.76

Lee, S., Choi, J., Sung, S., Lee, J., & Choi, W. (2020). Simulation and analysis of solar radiation change resulted from solar-sharing for agricultural solar photovoltaic system. Journal of The Korean Society of Agricultural Engineers, 62(5), 63-72. https://doi.org/10.5389/KSAE.2020.62.5.063

Mamun, M., Islam, M., Hasanuzzaman, M., & Selvaraj, J. (2022). Effect of tilt angle on the performance and electrical parameters of a PV module: Comparative indoor and outdoor experimental investigation. Energy and Built Environment, 3(3), 278-290. https://doi.org/10.1016/j.enbenv.2021.02.001

Marcu, M., Popescu, F., Pana, L., & Slusariuc, I. (2015). Modeling and simulation of solar radiation. Applied Mechanics and Materials, 710, 113-118. https://doi.org/10.4028/www.scientific.net/AMM.710.113

Mengata, G., Perabi, S., Ndi, F., & Wiysahnyuy, Y. (2022). Characterization of solar photovoltaic modules powered by artificial light for use as a source for smart sensors. Energy Reports, 8, 12105-12116. https://doi.org/10.1016/j.egyr.2022.09.056

Ponnada, S., Kumari, I., Chinnam, S., Sadat, M., Kumar, A., Chandra, R., Babu, D., Nowduri, A., & Sharma, R. (2022). Renewable energy. En P. Devi (Ed.), Green energy harvesting: Materials for hydrogen generation and carbon dioxide reduction (pp. 1-22). John Wiley & Sons. https://doi.org/10.1002/9781119776086.ch1

Reyes, F., & Cid, J. (2014). Arduino. Aplicaciones en robótica y mecatrónica (1.a ed.). Alfaomega Grupo Editor.

Sado, K., Hassan, L., & Sado, S. (2021). Photovoltaic panels tilt angle optimization. E3S Web of Conferences, 239, Artículo 19. https://doi.org/10.1051/e3sconf/202123900019

Servicio Nacional de Meteorología e Hidrología del Perú. (2003). Atlas de energía solar del Perú. https://hdl.handle.net/20.500.12542/343

Summerfield, M. (2009). Programación en Python 3. Anaya Multimedia.

Swain, S., Swain, S., & Mark, D. (2023, 28 de enero - 3 de febrero). Increasing efficiency of solar panels using curved solar cells and innovative optics [Presentación de escrito]. Proceedings Volume 12416, Physics, Simulation, and Photonic Engineering of Photovoltaic Devices XII, San Francisco, California, Estados Unidos. https://doi.org/10.1117/12.2647457

Tojeiro, G. (2014). Taller de Arduino (1.a ed.). Alfaomega Grupo Editor.

Trapani, P., & Magatti, D. (2019). Artificial lighting system for simulating a natural lighting. https://patentimages.storage.googleapis.com/24/5f/b6/14bdc8dcd09e07/US20140133125A1.pdf

Tress, W., Domanski, K., Carlsen, B., Agarwalla, A., Alharbi, E., Graetzel, M., & Hagfeldt, A. (2019). Performance of perovskite solar cells under simulated temperature-illumination real-world operating conditions. Nature Energy, 4, 568-574. https://doi.org/10.1038/s41560-019-0400-8

Zelle, J. (2010). Python programming: An introduction to computer science (2.a ed.). Franklin, Beedle & Associates.

Published

2024-12-11

Issue

Section

Science and technology

How to Cite

Artificial light simulator for solar panels: design and construction in Peru. (2024). Ingeniería Industrial, 47, 191-207. https://doi.org/10.26439/ing.ind2024.n47.7174