Artificial light simulator for solar panels: design and construction in Peru
DOI:
https://doi.org/10.26439/ing.ind2024.n47.7174Keywords:
renewable energy sources, light sources, simulation, solar panels, lightingAbstract
The objective of this research was to design and construct an artificial light machine that simulates the solar illuminations of the coast, highlands, and jungle of Peru, evaluating its impact on solar panels. The methodology included the construction of the machine at the University of Lima and tests with a module composed of an artificial light source, a solar panel, a measurement module, and an ammeter clamp. Tests were conducted varying the illumination to simulate the conditions of the different regions of Peru. The results obtained were 4,8; 7,2 and 4,0 kWh/m² for the simulations of the coast, highlands, and jungle, respectively. The research concluded that it is feasible to develop a solar lighting source that improves the efficiency of solar panels and allows working under stationary conditions. However, it is necessary to increase the number of tests and improve their precision for a more objective evaluation of their practical utility.
Downloads
References
Al-Dousari, A., Al-Nassar, W., Al-Hemoud, A., Alsaleh, A., Ramadan, A., Al-Dousari, N., & Ahmed, M. (2019). Solar and wind energy: Challenges and solutions in desert regions. Energy, 176, 184-194. https://doi.org/10.1016/j.energy.2019.03.180
Arias, R., Rodas, N., & Valverde, L. (2022, 11-13 de agosto). Evaluation of on-grid renewable energy system in a Peruvian small industry [Presentación de escrito]. 2022 IEEE XXIX International Conference on Electronics, Electrical Engineering and Computing (INTERCON), Lima, Perú. https://doi.org/10.1109/INTERCON55795.2022.9870149
Carvalho Neto, J. (2023). Performance analysis of silicon technologies photovoltaic cells using artificial light source in different spectra. IEEE Sensors Journal, 23(9), 9972-9980. https://doi.org/10.1109/JSEN.2023.3263139
Craciun, O., Radu, D., & Bacha, S. (2009, 28 de junio - 2 de julio). Halogen lamp modeling for low voltage power systems transient analyses [Sesión de conferencia]. 2009 IEEE Bucharest PowerTech, Bucarest, Rumania. https://doi.org/10.1109/PTC.2009.5282028
Fiorella Representaciones S. A. C. (s. f.). Tubo cuadrado de acero ASTM A500. Recuperado el 5 de abril de 2024 de https://www.fiorellarepre.com.pe/FichaTecnica/803012.pdf
Hudisteanu, S., Chereches, C., Turcanu, F., Taranu, N., Verdes, M., Ancas, A., Hudisteanu, I., Ungureanu, D., & Polcovnicu, R. (2022). Solar radiation simulation device for investigation of thermal and photovoltaic panels. International Journal of Modern Manufacturing Technologies, 14(3), 76-85. https://doi.org/10.54684/ijmmt.2022.14.3.76
Lee, S., Choi, J., Sung, S., Lee, J., & Choi, W. (2020). Simulation and analysis of solar radiation change resulted from solar-sharing for agricultural solar photovoltaic system. Journal of The Korean Society of Agricultural Engineers, 62(5), 63-72. https://doi.org/10.5389/KSAE.2020.62.5.063
Mamun, M., Islam, M., Hasanuzzaman, M., & Selvaraj, J. (2022). Effect of tilt angle on the performance and electrical parameters of a PV module: Comparative indoor and outdoor experimental investigation. Energy and Built Environment, 3(3), 278-290. https://doi.org/10.1016/j.enbenv.2021.02.001
Marcu, M., Popescu, F., Pana, L., & Slusariuc, I. (2015). Modeling and simulation of solar radiation. Applied Mechanics and Materials, 710, 113-118. https://doi.org/10.4028/www.scientific.net/AMM.710.113
Mengata, G., Perabi, S., Ndi, F., & Wiysahnyuy, Y. (2022). Characterization of solar photovoltaic modules powered by artificial light for use as a source for smart sensors. Energy Reports, 8, 12105-12116. https://doi.org/10.1016/j.egyr.2022.09.056
Ponnada, S., Kumari, I., Chinnam, S., Sadat, M., Kumar, A., Chandra, R., Babu, D., Nowduri, A., & Sharma, R. (2022). Renewable energy. En P. Devi (Ed.), Green energy harvesting: Materials for hydrogen generation and carbon dioxide reduction (pp. 1-22). John Wiley & Sons. https://doi.org/10.1002/9781119776086.ch1
Reyes, F., & Cid, J. (2014). Arduino. Aplicaciones en robótica y mecatrónica (1.a ed.). Alfaomega Grupo Editor.
Sado, K., Hassan, L., & Sado, S. (2021). Photovoltaic panels tilt angle optimization. E3S Web of Conferences, 239, Artículo 19. https://doi.org/10.1051/e3sconf/202123900019
Servicio Nacional de Meteorología e Hidrología del Perú. (2003). Atlas de energía solar del Perú. https://hdl.handle.net/20.500.12542/343
Summerfield, M. (2009). Programación en Python 3. Anaya Multimedia.
Swain, S., Swain, S., & Mark, D. (2023, 28 de enero - 3 de febrero). Increasing efficiency of solar panels using curved solar cells and innovative optics [Presentación de escrito]. Proceedings Volume 12416, Physics, Simulation, and Photonic Engineering of Photovoltaic Devices XII, San Francisco, California, Estados Unidos. https://doi.org/10.1117/12.2647457
Tojeiro, G. (2014). Taller de Arduino (1.a ed.). Alfaomega Grupo Editor.
Trapani, P., & Magatti, D. (2019). Artificial lighting system for simulating a natural lighting. https://patentimages.storage.googleapis.com/24/5f/b6/14bdc8dcd09e07/US20140133125A1.pdf
Tress, W., Domanski, K., Carlsen, B., Agarwalla, A., Alharbi, E., Graetzel, M., & Hagfeldt, A. (2019). Performance of perovskite solar cells under simulated temperature-illumination real-world operating conditions. Nature Energy, 4, 568-574. https://doi.org/10.1038/s41560-019-0400-8
Zelle, J. (2010). Python programming: An introduction to computer science (2.a ed.). Franklin, Beedle & Associates.
