Machine learning applied to forecast intermittent demandin a plastic packaging company
DOI:
https://doi.org/10.26439/ing.ind2024.n.6715Keywords:
plastic containers, supply chain, machine learning, sales forecasting, supply and demand, exponential smoothing, forecastingAbstract
This article compares three demand forecasting methods applied to a Peruvian cosmetic plastic packaging company with intermittent demand. The comparison between the error metrics for forecasting Mean Absolute Error, Mean Percentage Error, and Mean Squared Error obtained by the Croston, Croston TSB, and Exponential Smoothing methods showed that the Croston TSB model outperformed the other two, with an error of less than 20 % compared to actual sales.
Downloads
References
Altay, N., Rudisill, F., & Litteral, L. A. (2008). Adapting Wright’s modification of Holt’s method to forecasting intermittent demand. International Journal of Production Economics, 111(2), 389–408. https://doi.org/10.1016/j.ijpe.2007.01.009
Amirkolaii, K. N., Baboli, A., Shahzad, M. K., & Tonadre, R. (2017). Demand forecasting for irregular demands in business aircraft spare parts supply chains by using Artificial Intelligence (AI). IFAC-PapersOnLine, 50(1), 15221–15226. https://doi.org/10.1016/j.ifacol.2017.08.2371
Babai, M. Z., Syntetos, A., & Teunter, R. (2014). Intermittent demand forecasting: An empirical study on accuracy and the risk of obsolescence. International Journal of Production Economics, 157(1), 212–219. https://doi.org/10.1016/j.ijpe.2014.08.019
Cheng, C. Y., Chiang, K. L., & Chen, M. Y. (2016). Intermittent demand forecasting in a tertiary pediatric intensive care unit. Journal of Medical Systems, 40, Artículo 217. https://doi.org/10.1007/S10916-016-0571-9
Croston, J. D. (1972). Forecasting and stock control for inermittent demands. Operational Research Quarterly (1970-1977), 23(3), 289-303. http://dx.doi.org/10.2307/3007885
Gutierrez, R. S., Solis, A. O., & Mukhopadhyay, S. (2008). Lumpy demand forecasting using neural networks. International Journal of Production Economics, 111(2), 409–420. https://doi.org/10.1016/j.ijpe.2007.01.007
Kourentzes, N. (2013). Intermittent demand forecasts with neural networks. International Journal of Production Economics, 143(1), 198–206. https://doi.org/10.1016/j.ijpe.2013.01.009
Nikolopoulos, K. I., Babai, M. Z., & Bozos, K. (2016). Forecasting supply chain sporadic demand with nearest neighbor approaches. International Journal of Production Economics, 177, 139–148. https://doi.org/10.1016/j.ijpe.2016.04.013
Petropoulos, F., & Kourentzes, N. (2015). Forecast combinations for intermittent demand. Journal of the Operational Research Society, 66(6), 914–924. https://doi.org/10.1057/jors.2014.62
Prak, D., Teunter, R., & Syntetos, A. (2017). On the calculation of safety stocks when demand is forecasted. European Journal of Operational Research, 256(2), 454–461. https://doi.org/10.1016/j.ejor.2016.06.035
Prestwich, S. D., Tarim, S. A., & Rossi, R. (2021). Intermittency and obsolescence: A Croston method with linear decay. International Journal of Forecasting, 37(2), 708–715. https://doi.org/10.1016/j.ijforecast.2020.08.010
Sharma, M., Joshi, S., Luthra, S., & Kumar, A. (2021). Managing disruptions and risks amidst COVID-19 outbreaks: role of blockchain technology in developing resilient food supply chains. Operations Management Research, 15, 268-281. https://doi.org/10.1007/s12063-021-00198-9
Syntetos, A. A., & Boylan, J. E. (2001). On the bias of intermittent demand estimates. International journal of production economics, 71(1-3), 457-466. https://doi.org/10.1016/S0925-5273(00)00143-2
Teunter, R., & Sani, B. (2009). On the bias of Croston’s forecasting method. European Journal of Operational Research, 194(1), 177–183. https://doi.org/10.1016/j.ejor.2007.12.001
Willemain, T. R., Smart, C. N., & Schwarz, H. F. (2004). A new approach to forecasting intermittent demand for service parts inventories. International Journal of Forecasting, 20(3), 375–387. https://doi.org/10.1016/S0169-2070(03)00013-X
Yang, Y., Ding, C., Lee, S., Yu, L., & Ma, F. (2021). A modified Teunter-Syntetos-Babai method for intermittent demand forecasting. Journal of Management Science and Engineering, 6(1), 53–63. https://doi.org/10.1016/j.jmse.2021.02.008
