Machine learning applied to forecast intermittent demandin a plastic packaging company

Authors

DOI:

https://doi.org/10.26439/ing.ind2024.n.6715

Keywords:

plastic containers, supply chain, machine learning, sales forecasting, supply and demand, exponential smoothing, forecasting

Abstract

This article compares three demand forecasting methods applied to a Peruvian cosmetic plastic packaging company with intermittent demand. The comparison between the error metrics for forecasting Mean Absolute Error, Mean Percentage Error, and Mean Squared Error obtained by the Croston, Croston TSB, and Exponential Smoothing methods showed that the Croston TSB model outperformed the other two, with an error of less than 20 % compared to actual sales.

Downloads

Download data is not yet available.

Author Biographies

  • Alex Víctor Sánchez García, Universidad de Lima, Facultad de Ingeniería, Lima, Perú

    Bachiller en Ingeniería Industrial por la Universidad de Lima. Coordinador de operaciones en una empresa líder del sector plásticos. Su interés académico es la analítica de datos y los métodos cuantitativos aplicados a procesos de gestión.

  • José Antonio Taquía Gutiérrez, Universidad de Lima, Facultad de Ingeniería, Lima, Perú

    Doctor en Gestión de Empresas por la Facultad de Ingeniería Industrial de la Universidad Nacional Mayor de San Marcos. Magister en Ingeniería Industrial por la Universidad de Lima. Miembro del Institute of Industrial and Systems Engineers (IISE) de Estados Unidos. Tiene amplia experiencia en el diseño e implementación de tecnología orientada al análisis de datos y en metodología de investigación científica con proyectos desarrollados en operaciones, cadenas de abastecimiento, analítica en retail y servicios de educación.

References

Altay, N., Rudisill, F., & Litteral, L. A. (2008). Adapting Wright’s modification of Holt’s method to forecasting intermittent demand. International Journal of Production Economics, 111(2), 389–408. https://doi.org/10.1016/j.ijpe.2007.01.009

Amirkolaii, K. N., Baboli, A., Shahzad, M. K., & Tonadre, R. (2017). Demand forecasting for irregular demands in business aircraft spare parts supply chains by using Artificial Intelligence (AI). IFAC-PapersOnLine, 50(1), 15221–15226. https://doi.org/10.1016/j.ifacol.2017.08.2371

Babai, M. Z., Syntetos, A., & Teunter, R. (2014). Intermittent demand forecasting: An empirical study on accuracy and the risk of obsolescence. International Journal of Production Economics, 157(1), 212–219. https://doi.org/10.1016/j.ijpe.2014.08.019

Cheng, C. Y., Chiang, K. L., & Chen, M. Y. (2016). Intermittent demand forecasting in a tertiary pediatric intensive care unit. Journal of Medical Systems, 40, Artículo 217. https://doi.org/10.1007/S10916-016-0571-9

Croston, J. D. (1972). Forecasting and stock control for inermittent demands. Operational Research Quarterly (1970-1977), 23(3), 289-303. http://dx.doi.org/10.2307/3007885

Gutierrez, R. S., Solis, A. O., & Mukhopadhyay, S. (2008). Lumpy demand forecasting using neural networks. International Journal of Production Economics, 111(2), 409–420. https://doi.org/10.1016/j.ijpe.2007.01.007

Kourentzes, N. (2013). Intermittent demand forecasts with neural networks. International Journal of Production Economics, 143(1), 198–206. https://doi.org/10.1016/j.ijpe.2013.01.009

Nikolopoulos, K. I., Babai, M. Z., & Bozos, K. (2016). Forecasting supply chain sporadic demand with nearest neighbor approaches. International Journal of Production Economics, 177, 139–148. https://doi.org/10.1016/j.ijpe.2016.04.013

Petropoulos, F., & Kourentzes, N. (2015). Forecast combinations for intermittent demand. Journal of the Operational Research Society, 66(6), 914–924. https://doi.org/10.1057/jors.2014.62

Prak, D., Teunter, R., & Syntetos, A. (2017). On the calculation of safety stocks when demand is forecasted. European Journal of Operational Research, 256(2), 454–461. https://doi.org/10.1016/j.ejor.2016.06.035

Prestwich, S. D., Tarim, S. A., & Rossi, R. (2021). Intermittency and obsolescence: A Croston method with linear decay. International Journal of Forecasting, 37(2), 708–715. https://doi.org/10.1016/j.ijforecast.2020.08.010

Sharma, M., Joshi, S., Luthra, S., & Kumar, A. (2021). Managing disruptions and risks amidst COVID-19 outbreaks: role of blockchain technology in developing resilient food supply chains. Operations Management Research, 15, 268-281. https://doi.org/10.1007/s12063-021-00198-9

Syntetos, A. A., & Boylan, J. E. (2001). On the bias of intermittent demand estimates. International journal of production economics, 71(1-3), 457-466. https://doi.org/10.1016/S0925-5273(00)00143-2

Teunter, R., & Sani, B. (2009). On the bias of Croston’s forecasting method. European Journal of Operational Research, 194(1), 177–183. https://doi.org/10.1016/j.ejor.2007.12.001

Willemain, T. R., Smart, C. N., & Schwarz, H. F. (2004). A new approach to forecasting intermittent demand for service parts inventories. International Journal of Forecasting, 20(3), 375–387. https://doi.org/10.1016/S0169-2070(03)00013-X

Yang, Y., Ding, C., Lee, S., Yu, L., & Ma, F. (2021). A modified Teunter-Syntetos-Babai method for intermittent demand forecasting. Journal of Management Science and Engineering, 6(1), 53–63. https://doi.org/10.1016/j.jmse.2021.02.008

Published

2024-05-28

Issue

Section

Artículos

How to Cite

Machine learning applied to forecast intermittent demandin a plastic packaging company. (2024). Ingeniería Industrial, 97-109. https://doi.org/10.26439/ing.ind2024.n.6715

Most read articles by the same author(s)