Digital fabrication in inclusive education for students with visual impairment and blindness: literary and bibliometric analysis
Abstract
Technology integration in teaching people with disabilities is essential and has generated the so-called assistive technologies. Among them, digital manufacturing technologies, considered transformative, have made personalization faster and access easier and more affordable, mainly for the visually impaired. This research combines a literature review with bibliometrics to evaluate the application of digital fabrication technologies in the learning process of students with visual disabilities. Likewise, it analyzes its contribution to implementing explicit instruction, a fundamental and transversal methodology for teaching people with and without visual disabilities. It offers a multisensory educational experience and can potentially increase the number of inclusive educational spaces.
Downloads
References
Bonnet de León, A., Meier, C., & Saorin, J. L. (2020). Ceramic workshop adapted with 3D technologies to improve the self-esteem of people with disabilities. Sustainability, 12(21), 9063.
Bouck, E. (2010). Technology and students with disabilities: does it solve all the problems? En Current issues and trends in special education: research, technology, and teacher preparation (pp. 91-104). Emerald Group Publishing.
Brulé, E., & Bailly, G. (2021, mayo). “Beyond 3D printers”: understanding long-term digital fabrication practices for the education of visually impaired or blind youth. CHI Conference on Human Factors in Computing Systems (CHI ’21). https://doi.org/10.1145/3411764.3445403ï
Buehler, E., Comrie, N., Hofmann, M., McDonald, S., & Hurst, A. (2016). Investigating the implications of 3D printing in special education. ACM Transactions on Accessible Computing, 8(3). https://doi.org/10.1145/2870640
Clements, D. L., Sato, S., & Fonseca, A. P. (2016). Cosmic sculpture: a new way to visualize the cosmic microwave background. European Journal of Physics, 38(1), 015601.
D’Aveni, R. A. (2013, marzo). 3-D printing will change the world. Harvard Business Review. https://hbr.org/2013/03/3-d-printing-will-change-the-world
De Couvreur, L., Detand, J., & Goossens, R. (2011). The role of flow experience in co-designing o pen-design assistive devices. Include ’11.
Díaz-Navarro, S., & Sánchez de La Parra-Pérez, S. (2021). Human evolution in your hands. Inclusive education with 3D-printed typological replicas. Journal of Biological Education, 1-13. https://doi.org/10.1080/00219266.2021.1909635
Eisenhardt, K. M. (1989, octubre). Building theories from case study research. The Academy of Management Review, 4, vol. 14, 532-550.
Evelyn-Wright, S., Dickinson, A., & Zakrzewski, S. (2020). Getting to grips with 3D printed bones: using 3D models as “ diagrams” to improve accessibility of palaeopathological data. Papers from the Institute of Archaeology, 29(1), 1-10.
Fachinetti, T. A., & Carbone Carneiro, R. U. (2017). A tecnologia assistiva como facilitadora no processo de inclusão: das políticas públicas a literatura. Revista on Line de Política e Gestão Educacional , 21 (esp3), 1588-1597. https://doi.org/10.22633/rpge.v21.n.esp3.2017.10093
Ford, S., & Minshall, T. (2019). Where and how 3D printing is used in teaching and education. Additive Manufacturing, 25, 131-150. https://doi.org/10.1016/j.addma.2018.10.028
Fraser, W. J., & Maguvhe, M. O. (2008). Teaching life sciences to blind and visually impaired learners. Journal of Biological Education , 42 (2), 84-89.
García Palacios, E. M., González Galbarte, J. C., & López Cerezo, J. A. (2001). Ciencia, tecnología y sociedad: una aproximación conceptual. OEA.
Giraud, S., Brock, A. M., Macé, M. J. M., & Jouffrais, C. (2017). Map learning with a 3D printed interactive small-scale model: improvement of space and text memorization in visually impaired students. Frontiers in Psychology , 8 . https://doi.org/10.3389/fpsyg.2017.00930
Gordy, C. L., Sandefur, C. I., Lacara, T., Harris, F. R., & Ramírez, M. V. (2020). Building the lac operon: a guided-inquiry activity using 3D-printed models. Journal of Microbiology & Biology Education, 21(1), 60. https://doi.org/10.1128/jmbe.v21i1.2091
Götzelmann, T. (2018). Autonomous selection and printing of 3D models for people who are blind. ACM Transactions on Accessible Computing , 11(3). https://doi.org/10.1145/3241066
Grumman, A. S., & Carroll, F. A. (2019). 3D-printing electron density isosurface models and high-resolution molecular models based on Van der Waals Radii. Journal of Chemical Education, 96(6), 1157-1164.
Gual-Ortí, J., Puyuelo-Cazorla, M., & Lloveras-Macia, J. (2015). Improving tactile map usability through 3D printing techniques: an experiment with new tactile symbols. Cartographic Journal, 52(1), 51-57. https://doi.org/10.1179/1743277413Y.0000000046
Hamidi, F. (2019). DIY Assistive technology prototyping platforms: an international perspective. IEEE Pervasive Computing, 18(4), 12-16. https://doi.org/10.1109/MPRV.2019.2947749
Hamidi, F., Baljko, M., Kunic, T., & Feraday, R. (2014). Do-it-yourself (DIY) assistive technology: a communication board case study. International Conference on Computers for Handicapped Persons ICCHP 2014: Computers Helping People with Special Needs (pp. 287-294). http://www.makeymakey.com/forums
Hernández Sánchez, A., Torre Sánchez, C. E., Mejía Sánchez, J. M., & Córdova Moreno, L. G. (2020). Maquetas hápticas en 3D para niños con discapacidad visual. Un acercamiento a la ciudad histórica. Bitácora Urbano Territorial , 30 (2), 47-60. https://doi.org/10.15446/BITACORA.V30N2.81771
Hollier, S. (2017, April 2). Technology, education, and access: a “fair go” for people with disabilities. Proceedings of the 14th Web for All Conference, W4A 2017. https://doi.org/10.1145/3058555.3058557
Hook, J., Verbaan, S., Durrant, A., Olivier, P., & Wright, P. (2014). A study of the challenges related to DIY assistive technology in the context of children with disabilities. Proceedings of the Conference on Designing Interactive Systems: Processes, Practices, Methods, and Techniques, DIS (pp. 597-606). https://doi.org/10.1145/2598510.2598530
Horowitz, S. S., & Schultz, P. H. (2014). Printing space: using 3D printing of digital terrain models in geosciences education and research. Journal of Geoscience Education, 62(1), 138-145. https://doi.org/10.5408/13-031.1
Hughes, C. A., Morris, J. R., Therrien, W. J., & Benson, S. K. (2017). Explicit instruction: historical and contemporary contexts. Learning Disabilities Research and Practice, 32(3), 140-148. https://doi.org/10.1111/ldrp.12142
Hurst, A., & Tobias, J. (2011). Empowering individuals with Do-it-yourself assistive technology. En Association for Computing Machinery (Ed.), ASSETS’1113th International ACM SIGACCESS Conference on Computers and Accessibility.
Jain, T., Christy, B., Das, A. V., Bhaumik, D., & Satgunam, P. (2018). Fittle: a novel braille toy. Optometry and Vision Science, 95 (9), 902-907. https://doi.org/10.1097/OPX.0000000000001268
Jo, W., Jand, H. I., Harianto, R. A., So, J. H., Lee, H., Lee, H. J., & Moon, M.-W. (2016). Introduction of 3D printing technology in the classroom for visually impaired students. Journal of Visual Impairment & Blindness, 110 (2), 115-121. https://doi.org/10.1177/0145482X1611000205
Koelemeijer, P., & Winterbourne, J. (2021). 3D Printing the world: developing geophysical teaching materials and outreach packages. Frontiers in Earth Science, 9 , 297.
Kostakis, V., Niaros, V., & Giotitsas, C. (2015). Open-source 3D printing as a means of learning: an educational experiment in two high schools in Greece. Telematics and Informatics, 32 , 118-128.
Leria, L. A., Benítez, P., & Fraga, F. J. (2021). Assistive technology in large-scale assessments for students with visual impairments: a systematic review and recommendations based on the Brazilian reality. Education and Information Technologies, 26 (3), 3543-3573. https://doi.org/10.1007/s10639-020-10419-6
McLeskey, J., Barringer, M.-D., Billingsley, B., Brownell, M., Jackson, D., Kennedy, M., Lewis, T., Maheady, L., Rodriguez, J., Scheeler, M. C., Winn, J., & Ziegler, D. (2017). High-leverage practices in special education . Council for Exceptional Children & CEEDAR Center.
Mcloughlin, L., Fryazinov, O., Moseley, M., Sanchez, M., Adzhiev, V., Comninos, P., & Pasko, A. (2016). Virtual sculpting and 3D printing for young people with disabilities. IEEE Computer Graphics and Applications, 36 (1), 22-28.
Molins-Ruano, P., Gonzalez-Sacristan, C., & García-Saura, C. (2018). Phogo: a lo w cost, free and “maker” revisit to Logo. Computers in Human Behaviour, 80, 428-440. https://doi.org/10.1016/j.chb.2017.09.029
Monllor, J., & Soto-Simeone, A. (2020). The impact that exposure to digital fabrication technology has on student entrepreneurial intentions. International Journal of Entrepreneurial Behaviour and Research, 26(7), 1505-1523. https://doi.org/10.1108/IJEBR-04-2019-0201
Neira, E. A. S., Salinas, J., & Crosetti, B. de B. (2017). Emerging technologies (ETs) in education: a systematic review of the literature published between 2006 and 2016. International Journal of Emerging Technologies in Learning, 12(5), 128-149. https://doi.org/10.3991/ijet.v12i05.6939
Okerlund, J., & Wilson, D. (2019). DIY assistive technology for others: considering social impacts and opportunities to leverage HCI techniques. ACM International Conference Proceeding Serie s (pp. 152-155). https://doi.org/10.1145/3311890.3311914
Parry-Hill, J., Shih, P. C., Mankoff, J., & Ashbrook, D. (2017). Understanding volunteer AT fabricators: opportunities and challenges in DIY-AT for others in e-NABLE. Conference on Human Factors in Computing Systems - Proceedings, 2017-May (pp. 6184-6194). https://doi.org/10.1145/3025453.3026045
Qahmash, A. I. M. (2018). The potentials of using mobile technology in teaching individuals with learning disabilities: a review of special education technology literature. TechTrends, 62(6), 647-653. https://doi.org/10.1007/s11528-018-0298-1
Ramírez, M. V., & Gordy, C. L. (2020). Stem Build: an online community to decrease barriers to implementation of inclusive tactile teaching tools. Journal of Microbiology & Biology Education, 21(1), 05. https://doi.org/10.1128/jmbe.v21i1.1963
Riccomini, P. J., Morano, S., & Hughes, C. A. (2017). Big ideas in special education: specially designed instruction, high-leverage practices, explicit instruction, and intensive instruction. Teaching Exceptional Children, 50 (1), 20-27. https://doi.org/10.1177/0040059917724412
Rogers, W., & Johnson, N. (2018). Strategies to include students with severe/multiple disabilities within the general education classroom. Physical Disabilities: Education and Related Services, 37(2), 1-12. https://doi.org/10.14434/ pders.v37i2.24881
Santhakumar, R., Kaliyaperumal, K., & Louies, S. (2020). Scientometric profile of the University of Madras: the mother of South Indian universities. Desidoc. Journal of Library & Information Technology, 40(3), 185-191.
Sec. 300.5 Assistive Technology Device, Pub. L. No. Pub. L. No. 108-446, 20 U. S. C. 1400 et seq (2004). https://sites.ed.gov/idea/regs/b/a/300.5
Shah, S. R. U., & Mahmood, K. (2017). Review of Google Scholar, Web of Science, and Scopus search results: the case of inclusive education research. Library Philosophy and Practice.
Shaheen, N. L., & Lohnes Watulak, S. (2019). Bringing disability into the discussion: examining technology accessibility as an equity concern in the field of instructional technology. Journal of Research on Technology in Education, 51(2), 187-201. https://doi.org/10.1080/15391523.2019.1566037
Singhal, I., & Balaji, B. S. (2020). Creating atom representations using open-source, stackable 3D printed interlocking pieces with tactile features to support chemical equation writing for sighted and visually impaired students. Journal of Chemical Education, 97 (1), 118-124. https://doi.org/10.1021/acs.jchemed.9b00255
Smith, D. W., Lampley, S. A., Dolan, B., Williams, G., Schleppenbach, D., & Blair, M. (2020). Effect of 3D manipulatives on students with visual impairments who are learning chemistry constructs: a pilot study. Journal of Visual Impairment and Blindness, 114(5), 370-381. https://doi.org/10.1177/0145482X20953266
Stangl, A., Kim, J., & Yeh, T. (2014). 3D printed tactile picture books for children with visual impairments: a design probe. ACM International Conference Proceeding Series (pp. 321-324). https://doi.org/10.1145/2593968.2610482
Stauter, D. W., Prehn, J., Peters, M., Jeffries, L. M., Sylvester, L., Wang, H., & Dionne, C. (2019). Assistive technology for literacy in students with physical disabilities: a systematic review. Journal of Special Education Technology, 34(4), 284-292. https://doi.org/10.1177/0162643419868259
VanderMolen, J., & Fortuna, J. (2021). 3D printing as a teaching tool for people who are blind and visually impaired. The American Journal of Occupational Therapy, 75, supplement 2, 7512505211p1-7512505211p1.
Waltman, L., Van Eck, N. J., & Noyons, E. C. M. (2010). A unified approach to mapping and clustering of bibliometric networks. Journal of Informetrics, 4(4), 629-635. https://doi.org/10.1016/j.joi.2010.07.002
Wedler, H. B., Cohen, S. R., Davis, R. L., Harrison, J. G., Siebert, M. R., Willenbring, D., Hamann, C. S., Shaw, J. T., & Tantillo, D. J. (2012). Applied computational chemistry for the blind and visually impaired. Journal of Chemical Education, 89(11), 1400-1404. https://doi.org/10.1021/ed3000364
WHO (2021, 14 de octubre). Blindness and vision impairment. World Health Organization Newsroom-Fact Sheets. https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment
Wu, C. F., Wu, H. P., Tu, Y. H., & Yeh, I. T. (2020). 3D pen tactile pictures generated by individuals with visual impairments. Journal of Visual Impairment and Blindness, 114(5), 382-392. https://doi.org/10.1177/0145482X20954759

This work is licensed under a Creative Commons Attribution 4.0 International License.