La fabricación digital en la educación inclusiva para estudiantes con discapacidad visual. Análisis literario y bibliométrico

Palabras clave: educación para personas con discapacidad visual, fabricación digital, instrucción explícita, tecnologías de asistencia

Resumen

La integración de la tecnología en los procesos de enseñanza de las personas con discapacidad es primordial y ha generado las denominadas tecnologías de asistencia. Entre ellas, las tecnologías de fabricación digital, consideradas transformadoras, vienen acelerando su personalización, facilitando el acceso y asequibilidad principalmente para la población con discapacidad visual. La presente investigación combina la técnica de revisión de literatura con la bibliométrica para evaluar la aplicación de las tecnologías de fabricación digital en el proceso de aprendizaje de estudiantes con discapacidad visual. Asimismo, analiza su aporte en la implementación de la instrucción explícita, una metodología de enseñanza fundamental y transversal a la enseñanza de personas con y sin discapacidad visual, que ofrece una experiencia educativa multisensorial, teniendo potencial para fungir de catalizadora en el incremento de espacios educativos inclusivos.

Descargas

La descarga de datos todavía no está disponible.

Citas

Bonnet de León, A., Meier, C., & Saorin, J. L. (2020). Ceramic workshop adapted with 3D technologies to improve the self-esteem of people with disabilities. Sustainability, 12(21), 9063.

Bouck, E. (2010). Technology and students with disabilities: does it solve all the problems? En Current issues and trends in special education: research, technology, and teacher preparation (pp. 91-104). Emerald Group Publishing.

Brulé, E., & Bailly, G. (2021, mayo). “Beyond 3D printers”: understanding long-term digital fabrication practices for the education of visually impaired or blind youth. CHI Conference on Human Factors in Computing Systems (CHI ’21). https://doi.org/10.1145/3411764.3445403ï

Buehler, E., Comrie, N., Hofmann, M., McDonald, S., & Hurst, A. (2016). Investigating the implications of 3D printing in special education. ACM Transactions on Accessible Computing, 8(3). https://doi.org/10.1145/2870640

Clements, D. L., Sato, S., & Fonseca, A. P. (2016). Cosmic sculpture: a new way to visualize the cosmic microwave background. European Journal of Physics, 38(1), 015601.

D’Aveni, R. A. (2013, marzo). 3-D printing will change the world. Harvard Business Review. https://hbr.org/2013/03/3-d-printing-will-change-the-world

De Couvreur, L., Detand, J., & Goossens, R. (2011). The role of flow experience in co-designing o pen-design assistive devices. Include ’11.

Díaz-Navarro, S., & Sánchez de La Parra-Pérez, S. (2021). Human evolution in your hands. Inclusive education with 3D-printed typological replicas. Journal of Biological Education, 1-13. https://doi.org/10.1080/00219266.2021.1909635

Eisenhardt, K. M. (1989, octubre). Building theories from case study research. The Academy of Management Review, 4, vol. 14, 532-550.

Evelyn-Wright, S., Dickinson, A., & Zakrzewski, S. (2020). Getting to grips with 3D printed bones: using 3D models as “ diagrams” to improve accessibility of palaeopathological data. Papers from the Institute of Archaeology, 29(1), 1-10.

Fachinetti, T. A., & Carbone Carneiro, R. U. (2017). A tecnologia assistiva como facilitadora no processo de inclusão: das políticas públicas a literatura. Revista on Line de Política e Gestão Educacional , 21 (esp3), 1588-1597. https://doi.org/10.22633/rpge.v21.n.esp3.2017.10093

Ford, S., & Minshall, T. (2019). Where and how 3D printing is used in teaching and education. Additive Manufacturing, 25, 131-150. https://doi.org/10.1016/j.addma.2018.10.028

Fraser, W. J., & Maguvhe, M. O. (2008). Teaching life sciences to blind and visually impaired learners. Journal of Biological Education , 42 (2), 84-89.

García Palacios, E. M., González Galbarte, J. C., & López Cerezo, J. A. (2001). Ciencia, tecnología y sociedad: una aproximación conceptual. OEA.

Giraud, S., Brock, A. M., Macé, M. J. M., & Jouffrais, C. (2017). Map learning with a 3D printed interactive small-scale model: improvement of space and text memorization in visually impaired students. Frontiers in Psychology , 8 . https://doi.org/10.3389/fpsyg.2017.00930

Gordy, C. L., Sandefur, C. I., Lacara, T., Harris, F. R., & Ramírez, M. V. (2020). Building the lac operon: a guided-inquiry activity using 3D-printed models. Journal of Microbiology & Biology Education, 21(1), 60. https://doi.org/10.1128/jmbe.v21i1.2091

Götzelmann, T. (2018). Autonomous selection and printing of 3D models for people who are blind. ACM Transactions on Accessible Computing , 11(3). https://doi.org/10.1145/3241066

Grumman, A. S., & Carroll, F. A. (2019). 3D-printing electron density isosurface models and high-resolution molecular models based on Van der Waals Radii. Journal of Chemical Education, 96(6), 1157-1164.

Gual-Ortí, J., Puyuelo-Cazorla, M., & Lloveras-Macia, J. (2015). Improving tactile map usability through 3D printing techniques: an experiment with new tactile symbols. Cartographic Journal, 52(1), 51-57. https://doi.org/10.1179/1743277413Y.0000000046

Hamidi, F. (2019). DIY Assistive technology prototyping platforms: an international perspective. IEEE Pervasive Computing, 18(4), 12-16. https://doi.org/10.1109/MPRV.2019.2947749

Hamidi, F., Baljko, M., Kunic, T., & Feraday, R. (2014). Do-it-yourself (DIY) assistive technology: a communication board case study. International Conference on Computers for Handicapped Persons ICCHP 2014: Computers Helping People with Special Needs (pp. 287-294). http://www.makeymakey.com/forums

Hernández Sánchez, A., Torre Sánchez, C. E., Mejía Sánchez, J. M., & Córdova Moreno, L. G. (2020). Maquetas hápticas en 3D para niños con discapacidad visual. Un acercamiento a la ciudad histórica. Bitácora Urbano Territorial , 30 (2), 47-60. https://doi.org/10.15446/BITACORA.V30N2.81771

Hollier, S. (2017, April 2). Technology, education, and access: a “fair go” for people with disabilities. Proceedings of the 14th Web for All Conference, W4A 2017. https://doi.org/10.1145/3058555.3058557

Hook, J., Verbaan, S., Durrant, A., Olivier, P., & Wright, P. (2014). A study of the challenges related to DIY assistive technology in the context of children with disabilities. Proceedings of the Conference on Designing Interactive Systems: Processes, Practices, Methods, and Techniques, DIS (pp. 597-606). https://doi.org/10.1145/2598510.2598530

Horowitz, S. S., & Schultz, P. H. (2014). Printing space: using 3D printing of digital terrain models in geosciences education and research. Journal of Geoscience Education, 62(1), 138-145. https://doi.org/10.5408/13-031.1

Hughes, C. A., Morris, J. R., Therrien, W. J., & Benson, S. K. (2017). Explicit instruction: historical and contemporary contexts. Learning Disabilities Research and Practice, 32(3), 140-148. https://doi.org/10.1111/ldrp.12142

Hurst, A., & Tobias, J. (2011). Empowering individuals with Do-it-yourself assistive technology. En Association for Computing Machinery (Ed.), ASSETS’1113th International ACM SIGACCESS Conference on Computers and Accessibility.

Jain, T., Christy, B., Das, A. V., Bhaumik, D., & Satgunam, P. (2018). Fittle: a novel braille toy. Optometry and Vision Science, 95 (9), 902-907. https://doi.org/10.1097/OPX.0000000000001268

Jo, W., Jand, H. I., Harianto, R. A., So, J. H., Lee, H., Lee, H. J., & Moon, M.-W. (2016). Introduction of 3D printing technology in the classroom for visually impaired students. Journal of Visual Impairment & Blindness, 110 (2), 115-121. https://doi.org/10.1177/0145482X1611000205

Koelemeijer, P., & Winterbourne, J. (2021). 3D Printing the world: developing geophysical teaching materials and outreach packages. Frontiers in Earth Science, 9 , 297.

Kostakis, V., Niaros, V., & Giotitsas, C. (2015). Open-source 3D printing as a means of learning: an educational experiment in two high schools in Greece. Telematics and Informatics, 32 , 118-128.

Leria, L. A., Benítez, P., & Fraga, F. J. (2021). Assistive technology in large-scale assessments for students with visual impairments: a systematic review and recommendations based on the Brazilian reality. Education and Information Technologies, 26 (3), 3543-3573. https://doi.org/10.1007/s10639-020-10419-6

McLeskey, J., Barringer, M.-D., Billingsley, B., Brownell, M., Jackson, D., Kennedy, M., Lewis, T., Maheady, L., Rodriguez, J., Scheeler, M. C., Winn, J., & Ziegler, D. (2017). High-leverage practices in special education . Council for Exceptional Children & CEEDAR Center.

Mcloughlin, L., Fryazinov, O., Moseley, M., Sanchez, M., Adzhiev, V., Comninos, P., & Pasko, A. (2016). Virtual sculpting and 3D printing for young people with disabilities. IEEE Computer Graphics and Applications, 36 (1), 22-28.

Molins-Ruano, P., Gonzalez-Sacristan, C., & García-Saura, C. (2018). Phogo: a lo w cost, free and “maker” revisit to Logo. Computers in Human Behaviour, 80, 428-440. https://doi.org/10.1016/j.chb.2017.09.029

Monllor, J., & Soto-Simeone, A. (2020). The impact that exposure to digital fabrication technology has on student entrepreneurial intentions. International Journal of Entrepreneurial Behaviour and Research, 26(7), 1505-1523. https://doi.org/10.1108/IJEBR-04-2019-0201

Neira, E. A. S., Salinas, J., & Crosetti, B. de B. (2017). Emerging technologies (ETs) in education: a systematic review of the literature published between 2006 and 2016. International Journal of Emerging Technologies in Learning, 12(5), 128-149. https://doi.org/10.3991/ijet.v12i05.6939

Okerlund, J., & Wilson, D. (2019). DIY assistive technology for others: considering social impacts and opportunities to leverage HCI techniques. ACM International Conference Proceeding Serie s (pp. 152-155). https://doi.org/10.1145/3311890.3311914

Parry-Hill, J., Shih, P. C., Mankoff, J., & Ashbrook, D. (2017). Understanding volunteer AT fabricators: opportunities and challenges in DIY-AT for others in e-NABLE. Conference on Human Factors in Computing Systems - Proceedings, 2017-May (pp. 6184-6194). https://doi.org/10.1145/3025453.3026045

Qahmash, A. I. M. (2018). The potentials of using mobile technology in teaching individuals with learning disabilities: a review of special education technology literature. TechTrends, 62(6), 647-653. https://doi.org/10.1007/s11528-018-0298-1

Ramírez, M. V., & Gordy, C. L. (2020). Stem Build: an online community to decrease barriers to implementation of inclusive tactile teaching tools. Journal of Microbiology & Biology Education, 21(1), 05. https://doi.org/10.1128/jmbe.v21i1.1963

Riccomini, P. J., Morano, S., & Hughes, C. A. (2017). Big ideas in special education: specially designed instruction, high-leverage practices, explicit instruction, and intensive instruction. Teaching Exceptional Children, 50 (1), 20-27. https://doi.org/10.1177/0040059917724412

Rogers, W., & Johnson, N. (2018). Strategies to include students with severe/multiple disabilities within the general education classroom. Physical Disabilities: Education and Related Services, 37(2), 1-12. https://doi.org/10.14434/ pders.v37i2.24881

Santhakumar, R., Kaliyaperumal, K., & Louies, S. (2020). Scientometric profile of the University of Madras: the mother of South Indian universities. Desidoc. Journal of Library & Information Technology, 40(3), 185-191.

Sec. 300.5 Assistive Technology Device, Pub. L. No. Pub. L. No. 108-446, 20 U. S. C. 1400 et seq (2004). https://sites.ed.gov/idea/regs/b/a/300.5

Shah, S. R. U., & Mahmood, K. (2017). Review of Google Scholar, Web of Science, and Scopus search results: the case of inclusive education research. Library Philosophy and Practice.

Shaheen, N. L., & Lohnes Watulak, S. (2019). Bringing disability into the discussion: examining technology accessibility as an equity concern in the field of instructional technology. Journal of Research on Technology in Education, 51(2), 187-201. https://doi.org/10.1080/15391523.2019.1566037

Singhal, I., & Balaji, B. S. (2020). Creating atom representations using open-source, stackable 3D printed interlocking pieces with tactile features to support chemical equation writing for sighted and visually impaired students. Journal of Chemical Education, 97 (1), 118-124. https://doi.org/10.1021/acs.jchemed.9b00255

Smith, D. W., Lampley, S. A., Dolan, B., Williams, G., Schleppenbach, D., & Blair, M. (2020). Effect of 3D manipulatives on students with visual impairments who are learning chemistry constructs: a pilot study. Journal of Visual Impairment and Blindness, 114(5), 370-381. https://doi.org/10.1177/0145482X20953266

Stangl, A., Kim, J., & Yeh, T. (2014). 3D printed tactile picture books for children with visual impairments: a design probe. ACM International Conference Proceeding Series (pp. 321-324). https://doi.org/10.1145/2593968.2610482

Stauter, D. W., Prehn, J., Peters, M., Jeffries, L. M., Sylvester, L., Wang, H., & Dionne, C. (2019). Assistive technology for literacy in students with physical disabilities: a systematic review. Journal of Special Education Technology, 34(4), 284-292. https://doi.org/10.1177/0162643419868259

VanderMolen, J., & Fortuna, J. (2021). 3D printing as a teaching tool for people who are blind and visually impaired. The American Journal of Occupational Therapy, 75, supplement 2, 7512505211p1-7512505211p1.

Waltman, L., Van Eck, N. J., & Noyons, E. C. M. (2010). A unified approach to mapping and clustering of bibliometric networks. Journal of Informetrics, 4(4), 629-635. https://doi.org/10.1016/j.joi.2010.07.002

Wedler, H. B., Cohen, S. R., Davis, R. L., Harrison, J. G., Siebert, M. R., Willenbring, D., Hamann, C. S., Shaw, J. T., & Tantillo, D. J. (2012). Applied computational chemistry for the blind and visually impaired. Journal of Chemical Education, 89(11), 1400-1404. https://doi.org/10.1021/ed3000364

WHO (2021, 14 de octubre). Blindness and vision impairment. World Health Organization Newsroom-Fact Sheets. https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment

Wu, C. F., Wu, H. P., Tu, Y. H., & Yeh, I. T. (2020). 3D pen tactile pictures generated by individuals with visual impairments. Journal of Visual Impairment and Blindness, 114(5), 382-392. https://doi.org/10.1177/0145482X20954759

Publicado
2023-01-27
Cómo citar
Carrión Puelles, N. S., Silva Osores, C. E., & Valerio Araoz, J. (2023). La fabricación digital en la educación inclusiva para estudiantes con discapacidad visual. Análisis literario y bibliométrico. Limaq, 10(010), 27-57. https://doi.org/10.26439/limaq2022.n010.5319
Sección
Accesibilidad universal y diseño para todos