Dynamic Malware Analysis Using Machine Learning-Based Detection Algorithms
DOI:
https://doi.org/10.26439/interfases2024.n19.7097Keywords:
malware, machine learning, detecciónAbstract
Con la creciente popularidad del uso de teléfonos celulares, el riesgo de infecciones por malware en dichos dispositivos ha aumentado, lo que genera pérdidas financieras tanto para individuos como para organizaciones. Las investigaciones actuales se centran en la aplicación del aprendizaje automático para la detección y clasificación de estos programas malignos. Debido a esto el presente trabajo utiliza la frecuencia de llamadas al sistema para detectar y clasificar malware utilizando los algoritmos XGBoost, LightGBM y random forest. Los resultados más altos se obtuvieron con el algoritmo de LightGBM, logrando un 94.1% de precisión y 93.9% tanto para exactitud, recall y f1-score, lo que demuestra la efectividad tanto del uso del aprendizaje automático como del uso de comportamientos dinámicos del malware para la mitigación de amenazas de seguridad en dispositivos móviles.
Downloads
References
Aebersold, S., Kryszczuk, K., Paganoni, S., Tellenbach, B., & Trowbridge, T. (2016). Detecting obfuscated JavaScripts using machine learning. ICIMP 2016 the Eleventh International Conference on Internet Monitoring and Protection: May 22-26, 2016, Valencia, Spain, 1, 11–17. https://doi.org/10.21256/zhaw-3848
Ashik, M., Jyothish, A., Anandaram, S., Vinod, P., Mercaldo, F., Martinelli, F., & Santone, A. (2021). Detection of malicious software by analyzing distinct artifacts using machine learning and deep learning algorithms. Electronics, 10(14), 1694. https://doi.org/10.3390/electronics10141694
Aslan, Ö. A., & Samet, R. (2020). A comprehensive review on malware detection approaches. IEEE Access, 8, 6249-6271. https://doi.org/10.1109/ACCESS.2019.2963724
Bhatia, T., & Kaushal, R. (2017). Malware detection in android based on dynamic analysis. 2017 International Conference on Cyber Security and Protection Of Digital Services (Cyber Security), London, UK, 1-6. https://doi.org/10.1109/CyberSecPODS.2017.8074847
Chen, S., Xue, M., Fan, L., Hao, S., Xu, L., Zhu, H., & Li, B. (2018). Automated poisoning attacks and defenses in malware detection systems: An adversarial machine learning approach. Computers and Security, 73, 326-344. https://doi.org/10.1016/j.cose.2017.11.007
Chen, Y. C., Chen, H. Y., Takahashi, T., Sun, B., & Lin, T. N. (2021). Impact of code deobfuscation and feature interaction in android malware detection. IEEE Access, 9, 123208-123219. https://doi.org/10.1109/ACCESS.2021.3110408
Chen, Z., & Ren, X. (2023). An efficient boosting-based windows malware family classification system using multi-features fusion. Applied Sciences, 13(6), 4060. https://doi.org/10.3390/app13064060
Choudhary, S., & Sharma, A. (2020, February). Malware detection & classification using machine learning. 2020 International Conference on Emerging Trends in Communication, Control and Computing (ICONC3), Lakshmangarh, India, 1-4. https://doi.org/10.1109/ICONC345789.2020.9117547
Dhamija, H., & Dhamija, A. K. (2021). Malware detection using machine learning classification algorithms. International Journal of Computational Intelligence Research (IJCIR), 17(1), 1-7. https://www.ripublication.com/ijcir21/ijcirv17n1_01.pdf
Duo, W., Zhou, M., & Abusorrah, A. (2022). A survey of cyber attacks on cyber physical systems: Recent advances and challenges. IEEE/CAA Journal of Automatica Sinica, 9(5), 784-800. https://doi.org/10.1109/JAS.2022.105548
Feng, P., Ma, J., Sun, C., Xu, X., & Ma, Y. (2018). A novel dynamic android malware detection system with ensemble learning. IEEE Access, 6, 30996-31011. https://doi.org/10.1109/ACCESS.2018.2844349
Fortinet. (2022, February 8). América Latina sufrió más de 289 mil millones de intentos de ciberataques en 2021 [Press release]. https://www.fortinet.com/lat/corporate/about-us/newsroom/press-releases/2022/fortiguard-labs-reporte-ciberataques-america-latina-2021
Gao, Y., Hasegawa, H., Yamaguchi, Y., & Shimada, H. (2022). Malware detection using LightGBM with a custom logistic loss function. IEEE Access, 10, 47792-47804. https://doi.org/10.1109/ACCESS.2022.3171912
Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T. Y. (2017). LightGBM: A highly efficient gradient boosting decision tree. 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA. https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
Kim, S., Hong, S., Oh, J., & Lee, H. (2018, June). Obfuscated VBA macro detection using machine learning. 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Luxembourg, Luxembourg, 490-501. https://doi.org/10.1109/DSN.2018.00057
Kshirsagar, D., & Agrawal, P. (2022). A study of feature selection methods for android malware detection. Journal of Information and Optimization Sciences, 43(8), 2111-2120. https://doi.org/10.1080/02522667.2022.2133218
Kumar, R., & Geetha, S. (2020). Malware classification using XGboost-Gradient boosted decision tree. Advances in Science, Technology and Engineering Systems Journal, 5(5), 536–549. https://doi.org/10.25046/aj050566
Mahdavifar, S., Kadir, A. F. A., Fatemi, R., Alhadidi, D., & Ghorbani, A. A. (2020). Dynamic android malware category classification using semi-supervised deep learning. 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Calgary, AB, Canada, 515-522. https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00094
Mahindru, A., & Sangal, A. L. (2021). MLDroid—Framework for Android malware detection using machine learning techniques. Neural Computing and Applications, 33, 5183-5240. https://doi.org/10.1007/s00521-020-05309-4
Liu, K., Xu, S., Xu, G., Zhang, M., Sun, D., & Liu, H. (2020). A review of android malware detection approaches based on machine learning. IEEE Access, 8, 124579-124607. https://doi.org/10.1109/ACCESS.2020.3006143
Louk, M. H. L., & Tama, B. A. (2022). Tree-based classifier ensembles for PE malware analysis: A performance revisit. e, 15 (9), 332. https://doi.org/10.3390/a15090332
Onoja, M., Jegede, A., Blamah, N., Abimbola, O. V., & Omotehinwa, T. O. (2022). EEMDS: Efficient and effective malware detection system with hybrid model based on xceptioncnn and lightgbm algorithm. Journal of Computing and Social Informatics, 1(2), 42-57. https://doi.org/10.33736/jcsi.4739.2022
Palša, J., Ádám, N., Hurtuk, J., Chovancová, E., Madoš, B., Chovanec, M., & Kocan, S. (2022). MLMD—A malware-detecting antivirus tool based on the XGBoost machine learning algorithm. Applied Sciences, 12(13), 6672. https://doi.org/10.3390/app12136672
Şahın, D. Ö., Akleylek, S., & Kiliç, E. (2022). LinRegDroid: Detection of Android malware using multiple linear regression models-based classifiers. IEEE Access, 10, 14246–14259. https://doi.org/10.1109/ACCESS.2022.3146363
Sönmez, Y., Salman, M., & Dener, M. (2021). Performance analysis of machine learning algorithms for malware detection by using CICMalDroid2020 dataset. Düzce University Journal of Science and Technology, 9(6), 280-288. https://doi.org/10.29130/dubited.1018223
Surendran, R., & Thomas, T. (2022). Detection of malware applications from centrality measures of syscall graph. Concurrency and Computation: Practice and Experience, 34(10). https://doi.org/10.1002/cpe.6835
Surendran, R., Thomas, T., & Emmanuel, S. (2020). On existence of common malicious system call codes in android malware families. IEEE Transactions on Reliability, 70(1), 248-260. https://doi.org/10.1109/TR.2020.2982537
Urooj, B., Shah, M. A., Maple, C., Abbasi, M. K., & Riasat, S. (2022). Malware detection: a framework for reverse engineered android applications through machine learning algorithms. IEEE Access, 10, 89031-89050. https://doi.org/10.1109/ACCESS.2022.3149053
Wu, B., Chen, S., Gao, C., Fan, L., Liu, Y., Wen, W., & Lyu, M. R. (2021). Why an android app is classified as malware: Toward malware classification interpretation. ACM Transactions on Software Engineering and Methodology (TOSEM), 30(2), 1-29. https://doi.org/10.1145/3423096
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under an Attribution 4.0 International (CC BY 4.0) License. that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Last updated 03/05/21