A Bayesian Approach to Aggregate Planning Oriented to Retail Marketing

Authors

  • José Antonio Taquía-Gutiérrez Corporación Yanbal International (Perú)

DOI:

https://doi.org/10.26439/interfases2015.n008.572

Keywords:

supply chain, demand planning, quantitative marketing, bayesian forecasting

Abstract

The need to generate efficiencies in volume purchases or improve the accuracy of sales forecasts is based on integration efforts within organizations competing in retail channel pursuing gain market share. Long-term planning is usually restricted to a strategic planning guidelines, foresight scenarios or trade policies where the uncertainty of different variables generates little influence on tactical level planning. This article discusses the contribution of the Bayesian approach used to improve tactical planning in a highly dynamic environment due to the influence of changes in business strategies of medium and short term as usually occurs in retail marketing environment.

Downloads

Download data is not yet available.

Author Biography

  • José Antonio Taquía-Gutiérrez, Corporación Yanbal International (Perú)

    Candidato a doctor en Gestión Empresarial por la Universidad Nacional Mayor de San Marcos y magíster en Ingeniería Industrial por la Universidad de Lima, donde colabora con el Instituto de Investigación Científica. Actualmente desarrolla actividades laborales en Corporación Yanbal, en la que cumple el rol de senior de gestión de demanda corporativa. Es autor de “El arte de validar modelos de simulación: lineamientos para el análisis estadístico en el mercado de combustibles” y coautor de “Balanza comercial de los combustibles líquidos derivados del petróleo mediante dinámica de sistemas y simulación”, además de otros artículos publicados en revistas especializadas. Su interés académico se centra en los métodos cuantitativos aplicados a la gestión empresarial.

References

Bermúdez, J. D., Segura, J. V., y Vercher, E. (2010). Bayesian forecasting with the Holt–Winters model. Journal of the Operational Research Society, 61(1), 164-171.

Cea, M. Á. (2012). Fundamentos y aplicaciones en metodología cuantitativa. Madrid: Síntesis.

Chase, C. (2014). Innovations in business forecasting: predictive analytics. The Journal of Business Forecasting, 33(1), 29-34.

Chopra, S., y Meindl, P. (2013). Supply chain management: Strategy, planning, and operation. Boston: Pearson.

Euromonitor International. (Mayo de 2014). Retailing in Peru. Recuperado de http://www.euromonitor.com/

Fildes, R., y Kingsman, B. (2011). Incorporating demand uncertainty and forecast error in supply chain planning models. The Journal of the Operational Research Society, 62(3), 483-500.

Forrester, J. W. (2007). System dynamics a personal view of the fi rst fi fty years. System Dynamics Review, 23(2-3), 345-358.

Gamerman, D., y Lopes, H. F. (2006). Markov chain Monte Carlo: stochastic simulation for Bayesian inference. Boca Ratón, FL: Chapman & Hall/CRC.

Gaur, V., Kesavan, S., Raman, A., y Fisher, M. L. (2007). Estimating demand uncertainty using judgmental forecasts. Manufacturing & Service Operations Management, 9(4), 480-491.

Gelman, A., Carlin, J. B., Stern, B. D., Vehtari, A., y Rubin, D. B. (2014). Bayesian data analysis. Boca Ratón, FL: Chapman & Hall/CRC.

González, E. (2009). Análisis bayesiano del modelo de regresión lineal con una aplicación a datos astronómicos. (Tesis de pregrado). Universidad Tecnológica de la Mixteca, México.

Lapide, L. (2014). Looking over the visible planning horizon. Supply Chain Management Review, 18(5), 4-5.

Lunn, D., Jackson, C., Best, N., Thomas, A., y Spiegelhalter, D. J. (2013). The BUGS book: a practical introduction to bayesian analysis. Florida: Chapman & Hall/CRC.

Muñoz, D. F., y Muñoz, D. G. (2008). A bayesian framework for the incorporations of priors and sample data in simulation experiments. The Open Operational Research Journal, 2, 44-51.

Ntzoufras, I. (2011). Bayesian modeling using win BUGS. New Jersey: John Wiley & Sons.

Rossi, P. E., y Allenby, G. M. (2003). Bayesian statistics and marketing. Marketing Science, 22(3), 304-328.

Simchi-Levi, D. (2010). Operations rules: delivering customer value through fl exible operations. Massachusetts: MIT Press.

Stock, J. R., Boyer, S. L., y Harmon, T. (2010). Research opportunities in supply chain management. Journal of the Academy of Marketing Science, 38(1), 32-41.

Valencia, M., Correa, J. C., Díaz, F. J., y Ramírez, S. (2014). Bayesian modeling application and optimization to demand forecasting. Ingeniería y Desarrollo, 32(2), 179-199.

Wagner, M. (2010). Forecasting daily demand in cash supply chains. American Journal of Economics and Business Administration, 2(4), 377-383.

Downloads

Published

2015-04-04

Issue

Section

Research papers

How to Cite

A Bayesian Approach to Aggregate Planning Oriented to Retail Marketing. (2015). Interfases, 8(008), 27-47. https://doi.org/10.26439/interfases2015.n008.572

Most read articles by the same author(s)