Review of algorithms for automatic verification of off-line signatures

Authors

  • Luis Enrique Vílchez-Fernández Oficina Nacional de Procesos Electorales (Perú)

DOI:

https://doi.org/10.26439/interfases2017.n10.1774

Keywords:

Verification of signatures, recognition of signatures, signatures offline

Abstract

Nowadays, the signature is one of the most accepted badges for personal identification. Its inclusion is mandatory in documents such as bank checks, contracts, credit cards, among other public and private documents. However, the signature has become an attractive target for counterfeiting and, consequently, for fraud. For this reason, research has been carried out on automated signature recognition and state-of-the-art studies that are now required to be updated, since the most comprehensive work dates back to 2008 and in the following years further research has been carried out. The present work focuses on the comparative study of verification techniques of signatures offline from the point of view of efficiency and accuracy to verify the person’s authenticity. The research methodology used considers the procedure proposed by Kitchenham, which has been adapted, and involves the phases of planning, development and reporting of the review.

Downloads

Download data is not yet available.

References

Batista, L., Granger, E., y Sabourin, R. (2010). Improving performance of HMM-based off-line signature verification systems through a multi-hypothesis approach. International Journal on Document Analysis and Recognition (IJDAR), 13(1), 33-47. DOI:10.1007/s10032-009-0101-0

Batista, L., Granger, E., y Sabourin, R. (2012). Dynamic selection of generative–discriminative ensembles for off-line signature verification. Pattern Recognition, 45(4), 1326-1340. DOI:10.1016/j.patcog.2011.10.011

Bertolini, D., Oliveira, L., Justino, E., y Sabourin, R. (2010). Reducing forgeries in writer-independent off-line signature verification through ensemble of classifiers. Pattern Recognition, 43(1), 387-396. DOI:10.1016/j.patcog.2009.05.009

Bhattacharyya, D., Bandyopadhyay, S., Das, P., Ganguly, D., y Mukherjee, S. (2008). Statistical approach for offline handwritten signature verification. Journal of Computer Science, 4(3), 181-185. DOI:10.3844/jcssp.2008.181.185

Das, M. y Dulger, L. (2009). Signature verification (SV) toolbox: Application of PSO-NN. Engineering Applications of Artificial Intelligence, 22(4-5), 688-694. DOI:10.1016/j.engappai.2009.02.005

Eskander, G., Sabourin, R., y Granger, E. (2013). Hybrid writer-independent–writer-dependent offline signature verification system. IET Biometrics, 2(4), 169-181. DOI:10.1049/iet-bmt.2013.0024

Ferrer, M., Vargas, J., Morales, A., y Ordóñez, A. (2012). Robustness of Offline Signature Verification Based on Gray Level Features. IEEE Transactions on Information Forensics and Security, 7(3), 966-977. DOI:10.1109/TIFS.2012.2190281

Guerbai, Y., Chibani, Y., y Hadjadji, B. (2015). The effective use of the one-class SVM classifier for handwritten signature verification based on writer-independent parameters. Pattern Recognition, 48(1), 103-113. DOI:10.1016/j.patcog.2014.07.016

Impedovo, D., y Pirlo, G. (2008). Automatic Signature Verification: The State of the Art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 38(5), 609-635. DOI:10.1109/TSMCC.2008.923866

Jena, D., Majhi, B., Panigrahy, S., y Jena, S. (2008). Improved offline signature verification scheme using feature point extraction method. En 2008 7th IEEE International Conference on Cognitive Informatics, 475-480. DOI:10.1109/COGINF.2008.4639204

Kitchenham, B., Brereton, O., Budgen, D., Turner, M., Bailey, J., y Linkman, S. (2009). Systematic literature reviews in software engineering - A systematic literature review. Information and Software Technology, 51(1), 7-15. DOI:10.1016/j.infsof.2008.09.009

Kovari, B., y Charaf, H. (2013). A study on the consistency and significance of local features in off-line signature verification. Pattern Recognition Letters, 34(3), 247-255. DOI:10.1016/j.patrec.2012.10.011

Kudłacik, P., y Porwik, P. (2014). A new approach to signature recognition using the fuzzy method. Pattern Analysis and Applications, 17(3), 451-463. DOI:10.1007/s10044-012-0283-9

Kumar, R., Sharma, J., y Chanda, B. (2012). Writer-independent off-line signature verification using surroundedness feature. Pattern Recognition Letters, 33(3), 301-308. DOI:10.1016/jpatrec.2011.10.009

Leclerc, F., y Plamondon, R. (1994). Automatic signature verification: the state of the art-1989-1993. International Journal of Pattern Recognition and Artificial Intelligence, 8(3), 643-660. DOI:10.1142/S0218001494000346

Pal, U., Pal, S., y Blumenstein, M. (2013). Off-line verification technique for Hindi signatures. IET Biometrics, 2(4), 182-190. DOI:10.1049/iet-bmt.2013.0016

Pham, T., Le, H., y Do, N. (2015). Offline handwritten signature verification using local and global features. Annals of Mathematics and Artificial Intelligence, 75(1-2), 231-247. DOI:10.1007/s10472-014-9427-5

Pirlo, G., e Impedovo, D. (2013a). Cosine similarity for analysis and verification of static signatures. IET Biometrics, 2(4), 151–158. DOI:10.1049/iet-bmt.2013.0012

Pirlo, G., e Impedovo, D. (2013b). Verification of Static signatures by optical flow analysis. IEEE Transactions on Human-Machine Systems, 43(5), 499-505. DOI:10.1109/THMS.2013.2279008

Plamondon, R., y Lorette, G. (1989). Automatic signature verification and writer identification – the state of the art. Pattern Recognition, 22(2), 107-131. DOI: 10.1016/0031-3203(89)90059-9

Radhika, K., Venkatesha, M., y Sekhar, G. (2010). Off-Line signature authentication based on moment invariants using support vector machine. Journal of Computer Science, 6(3), 305-311. DOI:10.3844/jcssp.2010.305.311

Radhika, K., Venkatesha, M., y Sekhar, G. (2011). Signature authentication based on subpattern analysis. Applied Soft Computing, 11(3), 3218-3228. DOI:10.1016/j.asoc.2010.12.024

Rico, J., e Iñesta, J. (2012). Confidence voting method ensemble applied to off-line signature verification. Pattern Analysis and Applications, 15(2), 113-120. http://doi.org/10.1007/s10044-012-0270-1

Rivard, D., Granger, E., y Sabourin, R. (2013). Multi-feature extraction and selection in writer-independent off-line signature verification. International Journal on Document Analysis and Recognition (IJDAR), 16(1), 83-103. DOI:10.1007/s10032-011-0180-6

Shekar, B., Bharathi, R., Kittler, J., Vizilter, Y., y Mestestskiy, L. (2015). Grid structured morphological pattern spectrum for off-line signature verification. En 2015 International Conference on Biometrics (ICB) (430-435). IEEE. DOI:10.1109/ICB.2015.7139106

Swanepoel, J., y Coetzer, J. (2013). A robust dissimilarity representation for writer-independent signature modelling. IET Biometrics, 2(4), 159--–168. DOI:10.1049/iet-bmt.2013.0011

Tselios, K., Zois, E., Siores, E., Nassiopoulos, A., y Economou, G. (2012). Grid-based feature distributions for off-line signature verification. IET Biometrics, 1(1), 72-81. DOI:10.1049/iet-bmt.2011.0011

Vargas, J., Ferrer, M., Travieso, C., y Alonso, J. (2011). Off-line signature verification based on grey level information using texture features. Pattern Recognition, 44(2), 375-385. DOI:10.1016/j.patcog.2010.07.028

Vélez, J., Sánchez, Á., Moreno, B., y Esteban, J. (2009). Fuzzy shape-memory snakes for the automatic off-line signature verification problem. Fuzzy Sets and Systems, 160(2), 182-197. DOI:10.1016/j.fss.2008.05.021

Wen, J., Fang, B., Tang, Y., y Zhang, T. (2009). Model-based signature verification with rotation invariant features. Pattern Recognition, 42(7), 1458-1466. DOI:10.1016/j.patcog.2008.10.006

Zhang, B. (2010). Off‐line signature verification and identification by pyramid histogram of oriented gradients. International Journal of Intelligent Computing and Cybernetics, 3(4), 611-630. DOI:10.1108/17563781011094197

Downloads

Published

2017-12-18

Issue

Section

Review papers

How to Cite

Review of algorithms for automatic verification of off-line signatures. (2017). Interfases, 10(010), 149-164. https://doi.org/10.26439/interfases2017.n10.1774