Estudio de la adsorción de arsénico en agua mediante el uso del nanocompósito basado en nanopartículas de magnetita y goma de tara

Palabras clave: magnetita, goma de tara, arsénico, agua, metales pesados

Resumen

Uno de los contaminantes que se puede encontrar en los cuerpos de agua producto de la actividad industrial es el arsénico. Los métodos para la remoción de este no metal resultan ser poco eficientes y costosos; ante ello, se desarrolló un nuevo nanocompósito basado en goma de tara y nanopartículas de magnetita para la remoción de arsénico en agua. La caracterización de los nanocompósitos preparados con diferente relación (Fe3O4: goma de tara) mostró la presencia de la fase magnetita, según los análisis por difracción de rayos X. El tamaño de partícula era de 13,74 nm, lo cual se determinó mediante microscopía electrónica de transmisión. Las pruebas de remoción de arsénico en agua realizadas con los nanocompósitos con diferente contenido de magnetita, variación de pH y peso de este mostraron que este material con 80 % en peso de magnetita presentaba mayor eficiencia. Los valores máximos estudiados sobre la concentración de arsénico fueron de 2 ppm, lo cual llegó a remover el 24,8 % en quince minutos de exposición con el nanocompósito con 80 % de nanopartículas de magnetita.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Silvia Ponce Álvarez, Facultad de Ingeniería, Universidad de Lima, Perú

Doctora en Ciencias Químicas por la Universidad Autónoma de Madrid. Magíster en Gestión y Auditorías Medioambientales por la Universidad de Piura y magíster en Fisicoquímica de la Universidad Nacional Mayor de San Marcos (UNMSM). Licenciada en Química por la UNMSM. Investigadora y docente de la Universidad de Lima. Su experiencia abarca la preparación de nanomateriales para diversas aplicaciones, en la que se incluyen biopolímeros a partir de desechos agroindustriales. Actualmente, su trabajo se centra en la obtención de films y membranas a partir de nanocelulosa para aplicaciones como embalajes y la remoción de microcontaminantes.

Javier Quino Favero, Facultad de Ingeniería, Universidad de Lima, Perú

Doctor en Ingeniería y Ciencias Ambientales por la Universidad Nacional Agraria La Molina. Magíster en Microbiología y licenciado en Biología, ambos por la Universidad Peruana Cayetano Heredia. Se ha especializado en el tratamiento de aguas enfocándose en métodos para la remoción de metales pesados como el arsénico. Actualmente, es docente de la Universidad de Lima y dirige la carrera de Ingeniería Ambiental.

Juan Rodríguez Rodríguez, Facultad de Ciencias, Universidad Nacional de Ingeniería, Perú

Doctor en Ciencias con mención en Física y magíster en Ciencias con mención en Física, ambas obtenidas en la Universidad Nacional de Ingeniería (UNI). Licenciado en Física por la UNI. Investigador con amplia experiencia en el campo de la química ambiental y la gestión de recursos hídricos. Además, posee una sólida trayectoria en la evaluación de la calidad del agua y la modelización de la dispersión de contaminantes en ecosistemas acuáticos. Actualmente, es investigador y docente en la Universidad Nacional de Ingeniería.

Medalit Cevallos Barturen, Facultad de Ingeniería, Universidad de Lima, Perú

Ingeniera Industrial por la Universidad de Lima enfocada en la gestión de proyectos, con énfasis en el análisis de procesos y mejora continua. Cuenta con experiencia en planificar y dirigir auditorías internas, externas y homologaciones. Ha participado en proyectos de desarrollo y de investigación.

Abel Gutarra Espinoza, Facultad de Ingeniería, Universidad de Lima, Perú

Doctor, magíster y licenciado en Física por la Universidad Nacional de Ingeniería. Tiene amplia experiencia en el desarrollo de nuevos materiales para diversas aplicaciones. Docente e investigador de la Universidad de Lima y de la Universidad Nacional de Ingeniería.

Carolina Belver Coldeira, Facultad de Ingeniería Química, Universidad Autónoma de Madrid, España

Doctora en Química y magíster en Ciencias Químicas, ambas por la Universidad Autónoma de Madrid. Licenciada en Química por la Universidad Autónoma de Madrid. Investigadora centrada en la ciencia de los materiales, con especialización en el desarrollo de materiales avanzados para aplicaciones medioambientales y energéticas. Su trabajo abarca la síntesis y caracterización de nanomateriales, así como la evaluación de su desempeño en procesos de catálisis, adsorción y almacenamiento de energía. Su experiencia incluye la participación en proyectos de investigación relacionados con la producción de hidrógeno verde y la captura de CO2. Actualmente, es docente de la Universidad Autónoma de Madrid.

Jorge Bedia Matamoros, Facultad de Ingeniería Química, Universidad Autónoma de Madrid, España

Doctor en Ingeniería Química por la Universidad de Málaga. Ingeniero industrial por la misma universidad. Investigador con una sólida trayectoria en el campo de la catálisis heterogénea y la ciencia de los materiales. Actualmente, se desempeña como docente e investigador de la Universidad Autónoma de Madrid.

 

 

Jorge Bedia Matamoros, Facultad de Ingeniería Química, Universidad Autónoma de Madrid, España

Doctor en Ingeniería Química por la Universidad de Málaga. Ingeniero industrial por la misma universidad. Investigador con una sólida trayectoria en el campo de la catálisis heterogénea y la ciencia de los materiales. Actualmente, se desempeña como docente e investigador de la Universidad Autónoma de Madrid.

 

 

Citas

Aftabtalab, A., Rinklebe, J., Shaheen, S., Khan Niazi, N., Moreno-Jiménez, E., Schaller, J., & Knorr, K.-H. (2022). Review on the interactions of arsenic, iron (oxy)(hydr)oxides, and dissolved organic matter in soils, sediments, and groundwater in a ternary system. Chemosphere, 286(2), 131790 https://doi.org/10.1016/j.chemosphere.2021.131790

Aguilera, G., Berry, C., West, R., Gonzalez-Monterrubio, E., Angulo-Molina, A., Arias-Carrión, O., & Méndez-Rojas, M. A. (2019). Carboxymethyl cellulose coated magnetic nanoparticles transport across a human lung microvascular endothelial cell model of the blood-brain barrier. Nanoscale Advances, 1, 671-685. https://doi.org/10.1039/C8NA00010G

Ahmad, A., Cornelissen, E., van de Wetering, S., van Dijk, T., van Genuchten, C., Bundschuh, J., van der Wal, A., & Bhattacharya, P. (2018). Arsenite removal in groundwater treatment plants by sequential permanganate-ferric treatment. Journal of Water Process Engineering, 26, 221-229. https://doi.org/10.1016/j.jwpe.2018.10.014

Ahmad, A., van der Wens, P., Baken, K., de Waal, L., Bhattacharya, P., & Stuyfzand, P. (2020). Arsenic reduction to <1µg/L in Dutch drinking water. Environmental International, 134(105253). https://doi.org/10.1016/j.envint.2019.105253

Bhakat, D., Barik, P., & Bhattacharjee, A. (2018). Electrical conductivity behavior of Gum Arabic biopolymer-Fe3O4 nanocomposites. Journal of Physics and Chemistry of Solids, 112, 73-79. https://doi.org/10.1016/j.jpcs.2017.09.002

Buttersack, C. (2022). Modeling of type II high-resolution sorption isotherms: Evaluation of different approaches. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 650, 129489. https://doi.org/10.1016/j.colsurfa.2022.129489

Carneiro, M., Coelho, J., Pintor, A., Boaventura, R., Botelho, C. (2022). Multi-cycle regeneration of arsenic-loaded iron-coated cork granulates for water treatment, Journal of Water Process Engineering, 50, 103291. https://doi.org/10.1016/j.jwpe.2022.103291

Carneiro, M., Tomasi, I., Boaventura, R., Botelho, C., & Pintor, A. (2025). Environmental impact and cost analysis of arsenic removal from water using iron-based adsorbents: Comparison between natural and commercial materials. Journal of Environmental Chemical Engineering, 13(1), 115044. https://doi.org/10.1016/j.jece.2024.115044

Choque-Quispe, D., Choque-Quispe, Y., Solano-Reynoso, A. M., & Ramos-Pacheco, B. S. (2018). Capacidad floculante de coagulantes naturales en el tratamiento de agua. Tecnología Química, 38(2), 298-309. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2224-61852018000200008&lng=es&tlng=es

Chowdhury, S. R., & Yanful, E. K. (2010). Arsenic removal from aqueous solutions by adsorption on magnetite nanoparticles. Water and Environment Journal, 25(3), 429-437. https://doi.org/10.1111/j.1747-6593.2010.00242.x

Do, D., Le, A., Vu, V., Le, D., & Bui, H. (2025). Evaluation of water quality and key factors influencing water quality in intensive shrimp farming systems using principal component analysis-fuzzy approach. Desalination and Water Treatment, 321, 101002. https://doi.org/10.1016/j.dwt.2025.101002

Feuser, P., dos Santos, L., dos Santos, M., da Cas, A., Castilho, A., Ricci-Junior, E., Nele, M., Tedesco, A., Sayer, C., & Hermes, P. (2015). Encapsulation of magnetic nanoparticles in poly(methyl methacrylate) by miniemulsion and evaluation of hyperthermia in U87MG cells. European Polymer Journal, 68, 355-365. https://doi.org/10.1016/j.eurpolymj.2015.04.029

Gomez-Maldonado, D., Ponce, S., & Peresin, M. S. (2022). The applicability of cellulose — Tara Gum composite hydrogels as dye capture adsorbents. Water, Air, and Soil Pollution, 233(8), Artículo 340. https://doi.org/10.1007/s11270-022-05818-z

Gude, J. C. J., Rietveld, L.C., & van Halem, D. (2016). Fate of low arsenic concentrations during full-scale aeration and rapid filtration. Water Research, 88, 566-574. https://doi.org/10.1016/j.watres.2015.10.034

Hechavarría-Hernández, A., Martins, J., Barbiero, L., Rezende-Filho, A., Montes, C., Melfi, A., & Fostier, A. (2023). Spatial and seasonal variation of arsenic speciation in Pantanal soda lakes. Chemosphere, 329, 138672. https://doi.org/10.1016/j.chemosphere.2023.138672

Hussain, M., Bibi, I., Shahid, M., Shaheen, S., Shakoor, M., Bashir, S., Younas, F., Rinklebe, J., & Niazi, N. (2019). Chapter Two. Biogeochemical cycling, speciation and transformation pathways of arsenic in aquatic environments with the emphasis on algae. Comprehensive Analytical Chemistry, 85, 15-51. https://doi.org/10.1016/bs.coac.2019.03.007

Itävaara, M., & Vikman, M. (1996). An overview of methods for biodegradability testing of biopolymers and packaging materials. Journal of Environmental Polymer Degradation, 4, 29-36. https://doi.org/10.1007/BF02083880

Joshi, S., Sharma, M., Kumari, A., Shrestha, S., & Shrestha, B. (2019). Arsenic removal from water by adsorption onto iron oxide/nano-porous carbon magnetic composite. Applied Science, 9(18), 3732. https://doi.org/10.3390/app9183732

Kalam, S., Abu-Khamsin, S., Kamal, M., & Patil, S. (2021). Surfactant adsorption isotherms: A review. ACS Omega, 6(48), 32342-32348. http://doi.org/10.1021/acsomega.1c04661

Maity, J., Chen, C.-Y., Bhattacharya, P., Sharma, R., Ahmad, A., Patnaik, S., & Bundschuh, J. (2021). Advanced application of nano-technological and biological processes as well as mitigation options for arsenic removal. Journal of Hazardous Materials, 405, 123885. https://doi.org/10.1016/j.jhazmat.2020.123885

Malgas, S., van Dyk, J. S., & Pletschke, B. I. (2015). A review of the enzymatic hydrolysis of mannans and synergistic interactions between β-mannanase, β-mannosidase and α-galactosidase. World Journal of Microbiology and Biotechnology, 31(8), 1167-1175. http://doi.org/10.1007/s11274-015-1878-2

Mandal, S., Hwang, S., & Shi, S. Q. (2023). Guar gum, a low-cost sustainable biopolymer, for wastewater treatment: A review. International Journal of Biological Macromolecules, 226, 368-382. https://doi.org/10.1016/j.ijbiomac.2022.12.039

Mendes, J., Feuser, P., Cercená, R., Peterson, M., & Gonçalves, A. (2023). Obtention of magnetite nanoparticles via the hydrothermal method and effect of synthesis parameters. Journal of Magnetism and Magnetic Materials, 580, 170925. https://doi.org/10.1016/j.jmmm.2023.170925

Naoi, S., Hatakeyama, T., & Hatakeyama, H. (2002). Phase transition of locust bean gum-, tara gum- and guar gum-water systems. Journal of Thermal Analysis and Calorimetry, 70, 841-852. https://doi.org/10.1023/A:1022260304686

National Research Council. (1999). Arsenic in drinking water. National Academy Press. https://doi.org/10.17226/6444

Nikić, J., Watson, M., Tenodi, K., Dalmacija, B., & Agbaba, J. (2023). Pilot study on arsenic removal from phosphate rich groundwater by in-line coagulation and adsorption. Journal of Hazardous Materials Advances, 10, 100280. https://doi.org/10.1016/j.hazadv.2023.100280

Pintor, A., Vieira, B., Brandão, C., Boaventura, R., & Botelho, C. (2020). Complexation mechanisms in arsenic and phosphorus adsorption onto iron-coated cork granulates. Journal of Environmental Chemical Engineering, 8(5), 104184. https://doi.org/10.1016/j.jece.2020.104184

Prado, B., Kim, S., Özen, B., & Mauer, L. (2005). Differentiation of carbohydrate gums and mixtures using fourier transform infrared spectroscopy and chemometrics. Journal of Agricultural and Food Chemistry, 53(8), 2823-2829. https://doi.org/10.1021/jf0485537

Qu, M., Xiong, J., Zhou, J., Wang, L., Hu, T., Liu, F., & Zhang, Q. (2024). Modified water treatment residual serves as an adsorbent for the removal of heavy metals from water: A review. Journal of Industrial and Engineering Chemistry, 146, 122-135. https://doi.org/10.1016/j.jiec.2024.11.048

Saya, L., Malik, V., Singh, A., Singh, G., Gambhir, G., Singh, W., Chandra, R., & Hooda, S. (2021). Guar gum based nanocomposites: role in water purification through efficient removal of dyes and metal ions. Carbohydrate Polymers, 261, 117851. https://doi.org/10.1016/j.carbpol.2021.117851

Scaman, C. H., Lipari, F., & Herscovics, A. (1996). A spectrophotometric assay for α-mannosidase activity. Glycobiology, 6(3), 265-70. http://doi.org/10.1093/glycob/6.3.265

Shrestha, R., Ban, S., Devkota, S., Sharma, S., Joshi, R., Tiwari, A., Kim, H., & Joshi, K. (2021). Technological trends in heavy metals removal from industrial wastewater: A review. Journal of Environmental Chemical Engineering, 9(4), 105688. https://doi.org/10.1016/j.jece.2021.105688

Singh, P., Borthakur, A., Singh, R., Bhadouria, R., Singh, V., & Devi, P. (2021). A critical review on the research trends and emerging technologies for arsenic decontamination from water. Groundwater for Sustainable Development, 14, 100607. https://doi.org/10.1016/j.gsd.2021.100607

Siotto, M., Pasqualetti, P., Marano, M., & Squitti, R. (2014). Automation of o-dianisidine assay for ceruloplasmin activity analyses: Usefulness of investigation in Wilson’s disease and in hepatic encephalopathy. Journal of Neural Transmission, 121(10), 1281-1286. https://doi.org/10.1007/s00702-014-1196-0

Sun, Y., Han, Y., Gao, P., Wei, X., & Li, G. (2015). Thermogravimetric study of coal-based reduction of oolitic iron ore: Kinetics and mechanisms. International Journal of Mineral Processing, 143, 87-97. https://doi.org/10.1016/j.minpro.2015.09.005

Tang, Z., Liu, X., Gao, P., Han, Y., & Xu, B. (2022). Effective induction of magnetite on suspension magnetization roasting of hematite and reaction kinetics verification. Advanced Powder Technology, 33(6), 103593. https://doi.org/10.1016/j.apt.2022.103593

Tang, Z., Zhang, Q., Sun, Y., Gao, P., & Han, Y. (2021). Pilot-scale extraction of iron from flotation tailings via suspension magnetization roasting in a mixture of CO and H2 followed by magnetic separation. Resources, Conservation and Recycling, 172, 105680. https://doi.org/10.1016/j.resconrec.2021.105680

Thombare, N., Jha, U., Mishra, S., & Siddiqui, M. Z. (2016). Guar gum as a promising starting material for diverse applications: A review. International Journal of Biological Macromolecules, 88, 361-372. https://doi.org/10.1016/j.ijbiomac.2016.04.001

Valeriano-Mamani, J., & Matos-Chamorro, R. (2019). Influence of tara (Caesalpinia spinosa) gum as an aid in the coagulation-flocculation process to remove the turbidity of an artificial suspension of bentonite. Información Tecnológica, 30(5), 299-308. https://dx.doi.org/10.4067/S0718-07642019000500299

Warren, R. A. J. (1996). Microbial hydrolysis of polysaccharides. Annual Review of Microbiology, 50(1), 183-212. http://doi.org/10.1146/annurev.micro.50.1.183

Yadav, M., Singh, G., & Jadeja, R. (2021). Physical and chemical methods for heavy metal removal. Pollutants and Water Management: Resources, Strategies and Scarcity, 15, 377-397. https://doi.org/10.1002/9781119693635.ch15

Yan, W., He, X., Chen, M., Qian, B., Li, M., Yan, Y., Lin, C., & Mao, Z. (2024). High arsenic pollution of the eutrophic Lake Taihu and its relationship with iron, manganese, and dissolved organic matter: High-resolution synchronous analysis. Journal of Hazardous Materials, 467, 133644. https://doi.org/10.1016/j.jhazmat.2024.133644

Yu, X., Yang, R., Wu, C., Liu, B., & Zhang, W. (2022). The heating efficiency of magnetic nanoparticles under an alternating magnetic field. Scientific Reports, 12, 16055. https://doi.org/10.1038/s41598-022-20558-0

Yu, Z., Wei, C., Yang, F., Li, Z., Jiang, B., Dai, W., Tang, C., & Zhang, Y. (2025). Colloids fractionation and characterization of arsenic (As) and dissolved organic matter (DOM) in surface water around a closed arsenic mine. Journal of Hazardous Materials, 487, 137094. https://doi.org/10.1016/j.jhazmat.2025.137094

Zhuang, J., Li, M., Pu, Y., Ragauskas, A. J., & Yoo, C. G. (2020). Observation of potential contaminants in processed biomass using fourier transform infrared spectroscopy. Applied Sciences, 10(12), 4345. https://doi.org/10.3390/app10124345

Publicado
2025-06-10
Cómo citar
Ponce Álvarez, S., Quino Favero, J., Rodríguez Rodríguez, J., Cevallos Barturen, M., Gutarra Espinoza, A., Belver Coldeira, C., Bedia Matamoros, J., & Bedia Matamoros, J. (2025). Estudio de la adsorción de arsénico en agua mediante el uso del nanocompósito basado en nanopartículas de magnetita y goma de tara. Ingeniería Industrial, (48), 263-281. https://doi.org/10.26439/ing.ind2025.n48.7735
Sección
Ciencia y tecnología / Science and technology