Diseño de un sistema de control de tráiler autónomo

Palabras clave: redes neuronales, sistemas difusos, tráileres, control automático, sistemas dinámicos no holonómicos

Resumen

El presente trabajo define un diseño de control que consiste en integrar dos técnicas: una lineal LQR y una red neurodifusa, de tal manera que este sistema híbrido brinde un rango de trabajo amplio para que el tráiler siga cualquier trayectoria en direcciones de avance y retroceso simulando las reales condiciones de una conducción humana. Se propone también el seguimiento de cualquier trayectoria mediante el diseño de un método general para calcular los valores deseados de los estados del sistema, de tal manera que, con solo definir una función matemática de la ruta que se va a seguir, se conozcan los valores para el control del robot tipo tráiler. Se lograron resultados favorables del sistema aplicándolo en un ambiente controlado.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Wilder Medina Medina , Universidad Nacional de Ingeniería, Facultad de Ingeniería y de Sistemas, Lima, Perú

Candidato a doctor en Ingeniería Industrial por la Universidad Nacional de Ingeniería (UNI). Magíster en Ingeniería con especialidad en Calidad y Productividad por la Universidad Tecnológica de Monterrey, Nuevo León, México. Magíster en Dirección de Marketing, doble grado, por la Pontificia Universidad Católica del Perú (PUCP) y EADA (España). Magíster en Administración por la Universidad del Pacífico. Ingeniero industrial por la Universidad de Lima. Diplomaturas en Comercio Internacional por la PUCP y en Aduanas por la Escuela Nacional de Aduanas. Miembro de CTIC-UNI, que fabricó el primer ventilador mecánico de alta gama hecho en el Perú. Tiene más de diez años de experiencia gerencial y alta dirección en empresas públicas y privadas, líderes en sus rubros.

Citas

Ai, R. J. C. T., & Dadios, E. P. (2019, 29 de noviembre - 2 de diciembre). Neuro-fuzzy mobile robot navigation [Presentación de paper]. 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM). https://doi.org/10.1109/HNICEM.2018.8666348

Aissa, B. C., & Fatima, C. (2015, 13-15 de diciembre). Adaptive neuro-fuzzy control for trajectory tracking of a wheeled mobile robot [Presentación de paper]. 2015 4th International Conference on Electrical Engineering (ICEE). https://doi.org/10.1109/INTEE.2015.7416699

Alsharkawi, A., Al-Feyani, M., Ijaabo, E. M., & Khasawneh, H. (2020, 7-8 de octubre). Adaptive neuro-fuzzy inference system for a three-wheeled omnidirectional mobile robot [Presentación de paper]. 2020 3rd International Conference on Applied Engineering (ICAE). https://doi.org/10.1109/ICAE50557.2020.9350379

Béjar, E., & Morán, A. (2019, 5-8 de mayo). A preview neuro-fuzzy controller based on deep reinforcement learning for backing up a truck-trailer vehicle [Presentación de paper]. 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE). https://doi.org/10.1109/CCECE.2019.8861534

Borole, B. P., Jadhav, S. P., & Waje, P. (2016, 25-27 de noviembre). Design and implementation of fuzzy and neuro-fuzzy controller for mobile robot navigation [Presentación de paper]. 2016 IEEE 7th Power India International Conference (PIICON). http://dx.doi.org/10.1109/POWERI.2016.8077359

Cheng, J., Zhang, Y., & Wang, Z. (2015a, 23-25 de mayo). A direct Lyapunov approach for tracking control of mobile robot with two on-axle hitching trailers [Presentación de paper]. The 27th Chinese Control and Decision Conference (CCDC). https://doi.org/10.1109/CCDC.2015.7162515

Cheng, J., Zhang, Y., & Wang, Z. (2015b, 6-9 de diciembre). Orientation tracking control of mobile robot with three trailers [Presentación de paper]. Proceedings of the 2015 Chinese Intelligent Design Automation Conference. https://doi.org/10.1109/CCDC.2015.7162515

Do, C. H., Lin, H. Y., & Huang, Y. C. (2017, 11-14 de diciembre). Simultaneous localization and mapping with neuro-fuzzy assisted extended kalman filtering [Presentación de paper]. 2017 IEEE/SICE International Symposium on System Integration. https://doi.org/10.1109/SII.2017.8279244

Do, Q. H., & Chen, J. F. (2013). A neuro-fuzzy approach in the classification of students’ academic performance. Computational Intelligence and Neuroscience, 2013, Artículo 179097. https://doi.org/10.1155/2013/179097

Elhassan, A. (2015). Autonomous driving system for reversing an articulated vehicle [Tesis de maestría, The Royal Institute of Technology]. https://www.kth.se/polopoly_fs/1.602293.1600689194!/AmroThesis.pdf

Evestedt, N., Ljungqvist, O., & Axehill, D. (2016, 19-22 de junio). Path tracking and stabilization for a reversing general 2-trailer configuration using a cascaded control approach [Presentación de paper]. 2016 IEEE Intelligent Vehicles Symposium (IV). https://doi.org/10.1109/IVS.2016.7535535

Gupta, R. K., & Chauhan, S. (2015, 10-12 de diciembre). Comparision of PID controller & adaptive neuro fuzzy controller for robot manipulator [Presentación de paper]. 2015 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC). https://doi.org/10.1109/ICCIC.2015.7435761

Kayacan, E., Kayacan, E., Ramon, H., & Saeys, W. (2015). Learning in centralized nonlinear model predictive control: Application to an autonomous tractor-trailer system. IEEE Transactions on Control Systems Technology, 23(1), 197-205. https://doi.org/10.1109/TCST.2014.2321514

Kolb, J. K., Nitzsche, G., & Wagner, S. (2019). A simple yet efficient path tracking controller for autonomous trucks. Documentos IFAC en Línea, 52(8), 307-312. https://doi.org/10.1016/j.ifacol.2019.08.088

Kural, K., Hatzidimitris, P., Van de Wouw, N., Besselink, I., & Nijmeijer, H. (2017). Active trailer steering control for high capacity vehicle combinations. IEEE Transactions on Intelligent Vehicles, 2(4), 251-265. https://doi.org/10.1109/TIV.2017.2767281

Leng, Z., & Minor, M. A. (2017). Curvature-based ground vehicle control of trailer path following considering sideslip and limited steering actuation. IEEE Transactions on Intelligent Transportation Systems,18(2), 332-348. https://doi.org/10.1109/TITS.2016.2572208

Li, B., Wang, K., & Shao, Z. (2017, 28 de septiembre - 2 de octubre). Time-optimal trajectory planning for tractor-trailer vehicles via simultaneous dynamic optimization [Presentación de paper]. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE. https://doi.org/10.1109/IROS.2015.7353917

Liao, Y., Ou, Y., & Meng, S. (2017, 28-30 de mayo). Wheeled mobile robot based on adaptive linear quadratic Gaussian control [Presentación de paper]. 2017 29th Chinese Control and Decision Conference (CCDC). https://www.aminer.cn/pub/5c756feff56def97986a5725

Lin, Y. C., Nguyen, H. L. T., & Wang, C. H. (2017, 16-18 de mayo). Adaptive neuro-fuzzy predictive control for design of adaptive cruise control system [Presentación de paper]. 2017 IEEE 14th International Conference on Networking, Sensing and Control (ICNSC). https://doi.org/10.1109/ICNSC.2017.8000187

Ljungqvist, O., Axehill, D., & Helmersson, A. (2016, 12-14 de diciembre). Path following control for a reversing general 2-trailer system [Presentación de paper]. 2016 IEEE 55th Conference on Decision and Control (CDC), Las Vegas, Estados Unidos. https://doi.org/10.1109/CDC.2016.7798630

Lu, J., & Kintak, U. (2017, 9-12 de julio). Mobile robot navigation based on adaptive neuro-fuzzy inerence system with virtual target strategy [Presentación de paper]. 2017 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR). https://doi.org/10.1109/ICWAPR.2017.8076677

Mattar, E., AlMutib, K., AlSulaiman, M., & Ramdane, H. (2017, 8-11 de mayo). Mobile robot neuro-fuzzy navigation based VSLAM features learning [Presentación de paper]. 2017 9th IEEE-GCC Conference and Exhibition (GCCCE). https://doi.org/10.1109/IEEEGCC.2017.8447975

Medina Medina, W. (2018). Modelamiento y control de un sistema de tráiler autónomo. Ingeniería Industrial, 36, 257-284. https://doi.org/10.26439/ing.ind2018.n036.2457

Michałek, M. M. (2017). Cascade-like modular tracking controller for non-standard N-trailers. IEEE Transactions on Control Systems Technology, 25(2), 619-627. https://doi.org/10.1109/TCST.2016.2557232

Nawrocka, A., Nawrocki, M., & Andrzej, K. (2017, 28-31 de mayo). Advanced control algorithms for mobile robot [Presentación de paper]. 2017 18th International Carpathian Control Conference (ICCC). https://doi.org/10.1109/CarpathianCC.2017.7970435

Poornapushpakala, S. (2015, 19-20 de mayo). Simulation of neuro-fuzzy controller for a flow process using MATLAB [Presentación de paper]. 2015 International Conference on Circuits, Power and Computing Technologies (ICCPCT-2015). https://doi.org/10.1109/ICCPCT.2015.7159336

Prasad, A., Sharma, B., & Vanualailai, J. (2016, 5-6 de diciembre). A geometric approach to motion control of a standard tractor-trailer robot [Presentación de paper]. 2016 3rd Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE). https://doi.org/10.1109/APWC-on-CSE.2016.020

Rigatos, G., Siano, P., Wira, P., Busawon, K., & Binns, R. (2017, 10-12 de julio). Nonlinear optimal control for autonomous navigation of a truck and trailer system [Presentación de paper]. 2017 18th International Conference on Advanced Robotics (ICAR). https://doi.org/10.1109/ICAR.2017.8023657

Ritzen, P., Roebroek, E., Van de Wouw, N., Jiang, Z. P., & Nijmeijer, H. (2016). Trailer steering control of a tractor-trailer robot. IEEE Transactions on Control Systems Technology, 24(4), 1240-1252. https://doi.org/10.1109/TCST.2015.2499699

Sanders, D. A. (2018). Non-model-based control of a wheeled vehicle pulling two trailers to provide early powered mobility and driving experiences. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 26(19), 96-104. https://doi.org/10.1109/TNSRE.2017.2726443

Tan, P., & Cai, Z. (2015, 12-14 de diciembre). Modelling and planning of mobile robot navigation control in unknown environment [Presentación de paper]. 2015 International Conference on Computational Intelligence and Communication Networks (CICN). https://doi.org/10.1109/CICN.2015.292

Van Hau, P., Nam, D. P., Ha, N. T., Thanh, P. T., Hai, H. T., & Hanh, H. D. (2017, 21-23 de julio). Asymptotic stability of the whole tractor-trailer control system [Presentación de paper]. 2017 International Conference on System Science and Engineering (ICSSE). https://doi.org/10.1109/ICSSE.2017.8030910

Wu, T., & Hung, J. Y. (2017a, 19-21 de junio). Lateral position control for a tractor-trailer system using steering rate input [Presentación de paper]. 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE). https://doi.org/10.1109/ISIE.2017.8001297

Wu, T., & Hung, J. Y. (2017b, 30 de marzo - 2 de abril). Lateral position control for a tractor-trailer system using coordinate transformation and hybrid controllers [Presentación de paper]. SoutheastCon, 2017. https://doi.org/10.1109/SECON.2017.7925281

Wu, T., & Hung, J. Y. (2017c, 30 de marzo - 2 de abril). Path following for a tractor-trailer system using model predictive control [Presentación de paper]. SoutheastCon, 2017. https://doi.org/10.1109/SECON.2017.7925337

Yuan, J., Sun, F., & Huang, Y. (2015). Trajectory generation and tracking control for double-steering tractor-trailer mobile robots with on-axle hitching. IEEE Transactions on Industrial Electronics, 62(12), 7665-7677. https://doi.org/10.1109/TIE.2015.2455016

Yue, M., Hou, X., & Yang, L. (2017, 26-28 de julio). An efficient trajectory tracking control for tractor-trailer vehicle system [Presentación de paper]. 2017 36th Chinese Control Conference (CCC). https://doi.org/10.23919/ChiCC.2017.8027399

Zheltoukhov, A. A., & Stankevich, L. A. (2017). A survey of control architectures for autonomous mobile robots [Presentación de paper]. 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). https://doi.org/10.1109/EIConRus.2017.7910746

Publicado
2022-04-22
Cómo citar
Medina Medina , W. (2022). Diseño de un sistema de control de tráiler autónomo . Ingeniería Industrial, 25-66. https://doi.org/10.26439/ing.ind2022.n.5799
Sección
Artículos