Obtención de celobiosa a partir de la hidrólisis enzimática parcial de la celulosa de cáscara de arroz
Resumen
El objetivo de la investigación fue ablandar la cáscara de arroz mediante pretratamientos hidrotérmicos y alcalinos. Se aplicó temperatura a 121 °C por tres lapsos de tiempo (15, 30 y 45 minutos) y con NaOH en tres concentraciones (0,5, 1 y 1,5 %); se agitó a 120 rpm por una hora; para ajustar a pH 4,8 se adicionó HCl al 20 %, y se añadió 30 FPU de la enzima β-glucosidasa; se agitó a 120 rpm a 50 °C durante 144 horas. La aplicación de 121 °C durante 45 minutos logró un 34,62 ± 0,79 % de hidrólisis parcial de celulosa a celobiosa y 18,14 ± 0,09 % de hidrólisis total de celulosa a glucosa; y en los hidrolizados donde se pretrató con hidróxido de sodio al 1,5 %, se alcanzó 8,39 ± 0,79 % de celobiosa y 46,64 ± 0,30 % de glucosa. La aplicación de pretratamiento hidrotérmico favorece la hidrólisis parcial de la celulosa a celobiosa.
Descargas
Citas
Adler, A., Kumaniaev, I., Karacic, A., Baddigam, K., Hanes, R., Subbotina, E., Bartling, A., Huertas-Alonso, A., Moreno, A., Håkansson, H., Mathew, A., Beckham, G., & Samec, J. (2022). Lignin-first biorefining of Nordic poplar to produce cellulose fibers could displace cotton production on agricultural lands. Joule, 6(8), 1845-1858. https://doi.org/10.1016/j.joule.2022.06.021
Austad, A. (2018). Enzymatic conversion of cotton textiles [Tesis de posgrado no publicada]. Norwegian University of Life Sciences. https://nmbu.brage.unit.no/nmbu-xmlui/bitstream/handle/11250/2567315/Austad2018.pdf
Ávila, P., Silva, M., Martins, M., & Goldbeck, R. (2021). Cello-oligosaccharides production from lignocellulosic biomass and their emerging prebiotic applications. World Journal of Microbiology and Biotechnology, 37, 73 https://doi.org/10.1007/s11274-021-03041-2
Chen, P., Shrotri, A., & Fukuoka, A. (2021). Synthesis of cello-oligosaccharides by depolymerization of cellulose: A review. Applied Catalysis A: General, 621. https://doi.org/10.1016/j.apcata.2021.118177
De Oliveira, J., Bruni, G., Oliveira, K., Mello, S., Silveira, G., Guerra, A., & Da Rosa, E. (2017). Cellulose fibers extracted from rice and oat husks and their application in hydrogel. Food Chemistry, 221, 153-160. https://doi.org/10.1016/j.foodchem.2016.10.048
Eliche-Quesada, D., Felipe-Sesé, M., López-Pérez, J., & Infantes-Molina, A. (2017). Characterization and evaluation of rice husk ash and wood ash in sustainable clay matrix bricks. Ceramics International, 43(1), 463-475. https://doi.org/10.1016/j.ceramint.2016.09.181
Huang, G., Peng, W., Yang, S., & Yang, C. (2018). Delignification kinetic modeling of NH4OH-KOH-AQ pulping for bagasse. Industrial Crops and Products, 123, 740-745. https://doi.org/10.1016/j.indcrop.2018.07.040
Iftikhar, M., Asghar, A., Ramzan, N., Sajjadi, B., & Chen, W. (2019). Biomass densification: Effect of cow dung on the physicochemical properties of wheat straw and rice husk based biomass pellets. Biomass and Bioenergy, 122, 1-16. https://doi.org/10.1016/j.biombioe.2019.01.005
Kim, D., Park, H., Jung, Y., Sukyai, P., & Kim, H. (2019). Pretreatment and enzymatic saccharification of oak at high solids loadings to obtain high titers and high yields of sugars. Bioresource Technology, 284, 391-397. https://doi.org/10.1016/j.biortech.2019.03.134
Kumar, J., Saini, R., & Tewari, L. (2015). Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: Concepts and recent developments. 3 Biotech, 5, 337-353. https://doi.org/10.1007/s13205-014-0246-5
Kumar, P., Barrett, D., Delwiche, M., & Stroeve, P. (2009). Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production. Industrial & Engineering Chemistry Research, 48(8), 3713-3729. https://doi.org/10.1021/ie801542g
Lebaz, N., Cockx, A., Spérandio, M., Liné, A., & Morchain, J. (2016). Application of the Direct Quadrature Method of Moments for the modelling of the enzymatic hydrolysis of cellulose: II. Case of insoluble substrate. Chemical Engineering Science, 149, 322-333. https://doi.org/10.1016/j.ces.2016.04.029
Li, J., Li, S., Fan, C., & Yan, Z. (2012). The mechanism of poly (ethylene glycol) 4000 effect on enzymatic hydrolysis of lignocellulose. Colloids and Surfaces B: Biointerfaces, 89, 203-210. https://doi.org/10.1016/j.colsurfb.2011.09.019
Méndez-Líter, J., Gil-Muñoz, J., Nieto-Domínguez, M., Barriuso, J., De Eugenio, L., & Martínez, M. (2017). A novel, highly efficient β-glucosidase with a cellulose-binding domain: Characterization and properties of native and recombinant proteins. Biotechnology for Biofuels, 10, 1-15. https://doi.org/10.1186/s13068-017-0946-2
Naqvi, S., Uemura, Y., & Yusup, S. (2014). Catalytic pyrolysis of paddy husk in a drop type pyrolyzer for bio-oil production: The role of temperature and catalyst. Journal of Analytical and Applied Pyrolysis, 106, 57-62. https://doi.org/10.1016/j.jaap.2013.12.009
New, E., Wu, TY, Tien, C., Poon, Z., Loow, Y., Wei, L., Procentese, A., Siow, L., Teoh, W., Nik Daud, N., Jahim, J., & Mohammad, A. (2019). Potential use of pure and diluted choline chloride-based deep eutectic solvent in delignification of oil palm fronds. Process Safety and Environmental Protection, 123, 190-198. https://doi.org/10.1016/j.psep.2018.11.015
Ouyang, J., Dong, Z, Song, X., Lee, X., Chen, M., & Yong, Q. (2010). Improved enzymatic hydrolysis of microcrystalline cellulose (Avicel PH101) by polyethylene glycol addition. Bioresource Technology, 101(17), 6685-6691. https://doi.org/10.1016/j.biortech.2010.03.085
Parisutham, V., Chandran, S., Mukhopadhyay, A., Lee, S., & Keasling, J. (2017). Intracellular cellobiose metabolism and its applications in lignocellulose-based biorefineries. Bioresource Technology, 239, 496-506. https://doi.org/10.1016/j.biortech.2017.05.001
Rabek, J. (1980). Experimental methods in polymer chemistry: Physical principles and applications. John Wiley & Sons Ltd.
Resch, M., Baker, J., & Decker, S. (2015). Low solids enzymatic saccharification of lignocellulosic biomass. Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory. https://www.nrel.gov/docs/fy15osti/63351.pdf
Siccama, J., Oudejans, R., Zhang, L., Kabel, M., & Schutyser, M. (2022). Steering the formation of cellobiose and oligosaccharides during enzymatic hydrolysis of asparagus fibre. LWT, 160, artículo 113273 https://doi.org/10.1016/j.lwt.2022.113273
Silva, G., Couturier, M., Berrin, J.-G., Buléon, A., & Rouau, X. (2012). Effects of grinding processes on enzymatic degradation of wheat straw. Bioresource Technology, 103(1), 192-200. https://doi.org/10.1016/j.biortech.2011.09.073
Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2012). Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory. https://www.nrel.gov/docs/gen/fy13/42618.pdf
Soltani, N., Bahrami, A., Pech-Canul, M., & González, L. (2015). Review on the physicochemical treatments of rice husk for production of advanced materials. Chemical Engineering Journal, 264, 899-935. https://doi.org/10.1016/j.cej.2014.11.056
Wu, J., Wu, Y., Yang, F., Tang, C., Huang, Q., & Zhang, J. (2019). Impact of delignification on morphological, optical and mechanical properties of transparent wood. Composites Part A: Applied Science and Manufacturing, 117, 324-331. https://doi.org/10.1016/j.compositesa.2018.12.004
Wu, W., Hildebrand, A., Kasuga, T., Xiong, X., & Fan, Z. (2013). Direct cellobiose production from cellulose using sextuple beta-glucosidase gene deletion Neurospora crassa mutants. Enzyme and Microbial Technology, 52(3), 184-189. https://doi.org/10.1016/j.enzmictec.2012.12.010
Yaddanapudi, H., Hickerson, N., Saini, S., & Tiwari, A. (2017). Fabrication and characterization of transparent wood for next generation smart building applications. Vacuum, 146, 649-654. https://doi.org/10.1016/j.vacuum.2017.01.016
Yu, Y., Zeng, Y., Zuo, J., Ma, F., Yang, X., Zhang, X., & Wang, Y. (2013). Improving the conversion of biomass in catalytic fast pyrolysis via white-rot fungal pretreatment. Bioresource Technology, 134, 198-203. https://doi.org/10.1016/j.biortech.2013.01.167