La manufactura aditiva como elemento imprescindible de la industria 4.0 en beneficio de la ingeniería: un análisis bibliométrico

Palabras clave: manufactura aditiva, industria 4.0, ingeniería industrial, procesos de manufactura, bibliometría

Resumen

La manufactura aditiva, fundamental en la industria 4.0, transforma la producción creando objetos tridimensionales mediante capas sucesivas. Esta tecnología ofrece flexibilidad de diseño y eficiencia en el uso de materiales, pero enfrenta retos en la optimización de procesos para asegurar calidad y precisión. Su integración con la industria 4.0 plantea desafíos como la interoperabilidad de sistemas CAD, la gestión de datos y la ciberseguridad. A pesar de estos desafíos, permite crear geometrías complejas, reducir el consumo de materias primas y mejorar las propiedades de los productos finales. La investigación en materiales y procesos acelera su adopción, promoviendo modelos de negocio personalizados, sostenibles y descentralizados. Este enfoque está revolucionando la producción industrial y doméstica, y remodelará los modelos de negocio y diseño de productos. En la investigación, se revisaron 257 documentos, excluyéndose 172, y se examinaron 85 textos con el software MAXQDA v.2020 para el análisis bibliométrico.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Marco Antonio Díaz-Martínez, Instituto de Ciencias y Estudios Superiores de Tamaulipas A. C., Campus DESAD, Tampico, Tamaulipas, México

Doctor en proyectos por la Universidad Internacional Iberoamericana, México. Es profesor-investigador en el Instituto de Ciencias y Estudios Superiores de Tamaulipas A. C., México. Cuenta con experiencia en áreas de consultoría y desarrollo de proyectos. Es certificador avanzado en SolidWorks en el desarrollo de nuevos productos y simulaciones, por la empresa Desarrollo de Manufactura Digital (DMD). Además, es miembro
activo del comité de validación de reactivos del EGEL de Ingeniería Industrial en CENEVAL. Ha publicado artículos en revistas de México, España, Chile, Perú, Cuba, Paraguay e Inglaterra. Adicionalmente, es colaborador en el área de posgrado e investigación en el Instituto Tecnológico Superior de Pánuco, Veracruz, México.

Reina Verónica Román-Salinas, Instituto de Ciencias y Estudios Superiores de Tamaulipas A. C., Campus DESAD, Tampico, Tamaulipas, México

Doctora en Administración y Máster en Educación con especialidad en Organización y Administración de Instituciones de Educación Superior por el Instituto de Ciencias y Estudios Superiores de Tamaulipas A. C., México, donde también colabora. Además, cuenta con un Máster en Ingeniería Administrativa por el Instituto Tecnológico Superior de Pánuco. Ha sido directora de campus desde nivel medio superior hasta posgrado, y es miembro activo del comité de validación del EGEL de Ingeniería Industrial en CENEVAL; colaboró en el Consejo de Acreditación de la Enseñanza de la Ingeniería (CACEI). Ha publicado artículos en revistas de México, España, Chile, Perú, Cuba, Paraguay e Inglaterra.

Santos Ruíz-Hernández, Instituto de Ciencias y Estudios Superiores de Tamaulipas A. C., Campus DESAD, Tampico, Tamaulipas, México

Doctor en Educación Internacional por la Universidad Autónoma de Tamaulipas, así como doctor en Administración por el Instituto de Ciencias y Estudios Superiores de Tamaulipas, México. Posee maestrías en Ciencias de la Administración por la Universidad Valle de Bravo, México, y en Comunicación Académica en la Universidad Autónoma de Tamaulipas. Tiene experiencia laboral en el área de ingeniería de comunicaciones en empresas como Grupo Tampico y Grupo Sigma; y experiencia académica en el Instituto Tecnológico Superior de Pánuco, México, como subdirector académico. Es miembro del  Sistema Nacional de Investigadores, nivel candidato, reconocimiento entregado por el Consejo Nacional de Ciencia y Tecnología (CONACYT). Ha publicado trabajos en Inglaterra, España, Colombia, Chile, Brasil, Estados Unidos y México.

Nicolás Alberto Hernández-Cortés, Universidad Veracruzana, Campus Veracruz, Veracruz, México

Ingeniero naval por la Facultad de Ingeniería Naval de la Universidad Veracruzana, México. Analista en la Gerencia de Producción en Astilleros Unidos de Veracruz. Es coordinador general de Puertos Industriales SCT, diseñador, administrador e instructor de programas y cursos de capacitación en puertos y transporte marítimo del proyecto internacional TRAINMAR de las Naciones Unidas (UNCTAD). Catedrático en la Universidad Cristóbal Colón y en la Heroica Escuela Naval Militar, Veracruz, México. Actualmente, es maestrando de la Maestría de Ingeniería Aplicada de la Universidad Veracruzana.

Vania Iraís González-Rubín, Instituto de Ciencias y Estudios Superiores de Tamaulipas A. C., Campus DESAD, Tampico, Tamaulipas, México

Doctora en Administración y máster en Educación por el Instituto de Ciencias y Estudios Superiores de Tamaulipas, A. C., México. Es directora de Educación Superior a Distancia del mismo instituto. También es administradora y consultora de pymes, agente capacitador avalado ante la Secretaría de Trabajo y Previsión Social, agente capacitador autorizado ante el CONOCER-SEP, catedrática de nivel universitario y posgrado, y profesora de educación media superior.

Citas

Al-Jamal, O., Hinduja, S., & Li, L. (2008). Characteristics of the bond in Cu-H13 tool steel parts fabricated using SLM. CIRP Annals, 57(1), 239-242. https://doi.org/10.1016/j.cirp.2008.03.010

Almesmari, A., Sheikh-Ahmad, J., Jarrar, F., & Bojanampati, S. (2023). Optimizing the specific mechanical properties of lattice structures fabricated by material extrusion additive manufacturing. Journal of Materials Research and Technology, 22, 1821-1838. https://doi.org/10.1016/j.jmrt.2022.12.024

Azami, M., Siahsarani, A., Hadian, A., Kazemi, Z., Rahmatabadi, D., Kashani-Bozorg, S., & Abrinia, K. (2023). Laser powder bed fusion of Alumina/Fe-Ni ceramic matrix particulate composites impregnated with a polymeric resin. Journal of Materials Research and Technology, 24, 3133-3144. https://doi.org/10.1016/j.jmrt.2023.03.181

Bar-Cohen, Y. (Ed.). (2018). Advances in manufacturing and processing of materials and structures (1.a ed.). Taylor & Francis Group. https://doi.org/https://doi.org/10.1201/b22020

Basile, V., Grande, M., Marroco, V., Laneve, D., Petrignani, S., Prudenzano, F., & Fassi, I. (2020). Design and manufacturing of super-shaped dielectric resonator antennas for 5G applications using stereolithography. IEEE Access, 8, 82929-82937. https://doi.org/10.1109/ACCESS.2020.2991358

Behjat, A., Shamanian, M., Taherizadeh, A., Lannunziata, E., Bagherifard, S., Gadalińska, E., Saboori, A., & Iuliano, L. (2023). Microstructure-electrochemical behavior relationship in post processed AISI316L stainless steel parts fabricated by laser powder bed fusion. Journal of Materials Research and Technology, 23, 3294-3311. https://doi.org/10.1016/j.jmrt.2023.01.229

Bikas, H., Stavropoulos, P., & Chryssolouris, G. (2016). Additive manufacturing methods and modelling approaches: A critical review. The International Journal of Advanced Manufacturing Technology, 83(1), 389-405. https://doi.org/10.1007/s00170-015-7576-2

Butt, J. (2020). Exploring the interrelationship between additive manufacturing and Industry 4.0. Designs, 4(2), 1-33. https://doi.org/10.3390/designs4020013

Cesar-Juárez, Á., Olivos-Meza, A., Landa-Solís, C., Cárdenas-Soria, V., Silva-Bermúdez, P., Suárez, C., Olivos, B., & Ibarra-Ponce, J. (2018). Uso y aplicación de la tecnología de impresión y bioimpresión 3D en medicina. Revista de la Facultad de Medicina de la UNAM, 61(6), 43-51. http://dx.doi.org/10.22201/fm.24484865e.2018.61.6.07

Chen, H., & Zhao, Y. (2016). Process parameters optimization for improving surface quality and manufacturing accuracy of binder jetting additive manufacturing process. Rapid Prototyping Journal, 22(3), 527-538. https://doi.org/10.1108/RPJ-11-2014-0149

Chen, Q., Juste, E., Lasgorceix, M., Petit, F., & Leriche, A. (2022). Binder jetting process with ceramic powders: Influence of powder properties and printing parameters. Open Ceramics, 9, 1-14. https://doi.org/10.1016/j.oceram.2022.100218

Chen, Z., Wang, D., & Zhang, Y. (2023). Microphone signal specialities in laser powder bed fusion: single-track scan and multi-track scan. Journal of Materials Research and Technology, 24, 1344-1362. https://doi.org/https://doi.org/10.1016/j.jmrt.2023.03.091

Cho, Y. H., Park, S. Y., Kim, J. Y., & Lee, K. A. (2023). 17-4PH stainless steel with excellent strength-elongation combination developed via material extrusion additive manufacturing. Journal of Materials Research and Technology, 24, 3284-3299. https://doi.org/10.1016/j.jmrt.2023.03.228

Credi, C., Bernasconi, R., Levi, M., & Magagnin, L. (2023). Self-activating metal-polymer composites for the straightforward selective metallization of 3D printed parts by stereolithography. Journal of Materials Research and Technology, 22, 1855-1867. https://doi.org/10.1016/j.jmrt.2022.12.035

Cunningham, C., Flynn, J., Shokrani, A., Dhokia, V., & Newman, S. (2018). Invited review article: Strategies and processes for high quality wire arc additive manufacturing. Additive Manufacturing, 22, 672-686. https://doi.org/10.1016/j.addma.2018.06.020

DebRoy, T., Wei, H., Zuback, J., Mukherjee, T., Elmer, J., Milewski, J., Beese, A., Wilson-Heid, A., De, A., & Zhang, W. (2018). Additive manufacturing of metallic components – Process, structure and properties. Progress in Materials Science, 92, 112-224. https://doi.org/10.1016/j.pmatsci.2017.10.001

Ehmsen, S., Glatt, M., & Aurich, J. (2023). Influence of process parameters on the power consumption of high-speed laser directed energy deposition. Procedia CIRP, 116, 89-94. https://doi.org/10.1016/j.procir.2023.02.016

Elhazmiri, B., Naveed, N., Naveed, M., & Ul, M. (2022). The role of additive manufacturing in industry 4.0: An exploration of different business models. Sustainable Operations and Computers, 3, 317-329. https://doi.org/https://doi.org/10.1016/j.susoc.2022.07.001

Ford, S., & Despeisse, M. (2016). Additive manufacturing and sustainability: An exploratory study of the advantages and challenges. Journal of Cleaner Production, 137, 1573-1587. https://doi.org/10.1016/j.jclepro.2016.04.150

Gao, W., Zhang, Y., Ramanujan, D., Ramani, K., Chen, Y., Williams, C., Wang, C., Shin, Y., Zhang, S., & Zavattieri, P. (2015). The status, challenges, and future of additive manufacturing in engineering. Computer-Aided Design, 69, 65-89. https://doi.org/10.1016/j.cad.2015.04.001

Godoi, F. C., Prakash, S., & Bhandari, B. R. (2016). 3d printing technologies applied for food design: Status and prospects. Journal of Food Engineering, 179, 44-54. https://doi.org/10.1016/j.jfoodeng.2016.01.025

Gokcekaya, O., Ishimoto, T., Nishikawa, Y., Kim, Y., Matsugaki, A., Ozasa, R., Weinmann, M., Schnitter, C., & Nakano, T. (2023). Novel single crystalline-like non-equiatomic TiZrHfNbTaMo bio-high entropy alloy (BioHEA) developed by laser powder bed fusion. Materials Research Letters, 11(4), 274-280. https://doi.org/10.1080/21663831.2022.2147406

Golab, M., Massey, S., & Moultrie, J. (2022). How generalisable are material extrusion additive manufacturing parameter optimisation studies? A systematic review. Heliyon, 8(11), 1-30. https://doi.org/10.1016/j.heliyon.2022.e11592

Guo, A., Wang, J., Tang, R., Kong, H., Kong, D., Qu, P., Wang, S., Wang, H., & Hu, Y. (2023). Insights into the effects of epoxy resin infiltration on powder aging issue induced by powder recycling in powder bed fusion of Nylon12 materials. Journal of Materials Research and Technology, 23, 3151-3165. https://doi.org/10.1016/j.jmrt.2023.02.003

Guo, Y., Chen, C., He, W., Cao, Y., Xing, H., Fang, H., Wu, C., & Zhou, K. (2023). Compressive fatigue behavior of graded tantalum scaffolds produced by electron beam powder bed fusion. Journal of Materials Research and Technology, 24, 6451-6462. https://doi.org/10.1016/j.jmrt.2023.04.235

Haddaway, N., Page, M., Pritchard, C., & McGuiness, L. (2022). PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Systematic Reviews, 18(2), 1-12. https://doi.org/10.1002/cl2.1230

Holland, S., Foster, T., MacNaughtan, W., & Tuck, C. (2018). Design and characterisation of food grade powders and inks for microstructure control using 3D printing. Journal of Food Engineering, 220, 12-19. https://doi.org/10.1016/j.jfoodeng.2017.06.008

Hwang, S., Oh, W.-J., Kim, D.-H., Kim, J., Oh, J., Nam, T.-H., Kim C.-S., & Lee, T. (2023). Optimizing interlayer cooling for SUS316L thin wall fabricated by directed energy deposition. Journal of Materials Research and Technology, 23, 5239-5245. https://doi.org/10.1016/j.jmrt.2023.02.145

Ikeda, Y., Takeuchi, T., Koike, R., Kakinuma, Y., Kondo, M., Oda, Y., & Mori, T. (2023). Evaluation of fabrication parameters for foam stainless steel in directed energy deposition. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 17(1), 1-11. https://doi.org/10.1299/jamdsm.2023jamdsm0011

Jeong, H.-I., Lee, C.-M., & Kim, D.-H. (2023). Manufacturing of Ti-Nb-Cr-V-Ni high entropy alloy using directed energy deposition and evaluation of materials properties. Journal of Materials Research and Technology, 23, 5606-5617. https://doi.org/10.1016/j.jmrt.2023.02.168

Karabutov, A., & Novikov, M. (2023). Laser-ultrasound diagnostics of plastic products manufactured by laser stereolithography. The International Archives of the Photogrammetry and Remote Sensing, 48(2), 103-107. https://doi.org/10.5194/isprs-archives-XLVIII-2-W3-2023-103-2023

Keist, J., & Palmer, T. (2017). Development of strength-hardness relationships in additively manufactured titanium alloys. Materials Science and Engineering: A, 693, 214-224. https://doi.org/10.1016/j.msea.2017.03.102

Krajňák, T., Janeček, M., Preisler, D., Stráský, J., Kozlík, J., Škraban, T., Brázda, M. & Džugan, J. (2023). Microstructure evolution in compositionally graded Ti(4-12 wt% Mo) prepared by laser directed energy deposition. Journal of Materials Research and Technology, 23, 4527-4537. https://doi.org/10.1016/j.jmrt.2023.01.215

Kumar, N., Shaikh, S., Jain, P., & Tandon, P. (2015). Effect of fractal curve based toolpath on part strength in fused deposition modelling. International Journal of Rapid Manufacturing, 5(2). https://doi.org/10.1504/IJRAPIDM.2015.073576

Kumar, S., Gopi, T., Harikeerthana, N., Kumar, M., Gaur, V., Krolczyk, G., & Wu, C. (2023). Machine learning techniques in additive manufacturing: A state of the art review on design, processes and production control. Journal of Intelligent Manufacturing, 34, 21-55. https://doi.org/10.1007/s10845-022-02029-5

Kumara, C., Segerstark, A., Hanning, F., Dixit, N., Joshi, S., Moverare, J., & Nylén, P. (2019). Microstructure modelling of laser metal powder directed energy deposition of alloy 718. Additive Manufacturing, 25, 357-364. https://doi.org/10.1016/j.addma.2018.11.024

Leary, M. (2020). Powder bed fusion. En M. Leary (Ed.), Design for additive manufacturing (pp. 295-319). https://doi.org/10.1016/B978-0-12-816721-2.00011-7

Li, K., Chen, W., Gong, N., Pu, H., Luo, J., Zhang, D., & Murr, L. (2023). A critical review on wire-arc directed energy deposition of high-performance steels. Journal of Materials Research and Technology, 24, 9369-9412. https://doi.org/10.1016/j.jmrt.2023.05.163

Li, W., Wang, M., Ma, H., Chapa-Villarreal, F., Oliveira, A., & Zhang, Y. (2023). Stereolithography apparatus and digital light processing-based 3D bioprinting for tissue fabrication. iScience, 26(2), 1-21. https://doi.org/10.1016/j.isci.2023.106039

Liverani, A., Bacciaglia, A., Nisini, E., & Ceruti, A. (2023). Conformal 3D material extrusion additive manufacturing for large moulds. Applied Sciences, 13(3), 1-19. https://doi.org/10.3390/app13031892

Lv, X., Ye, F., Cheng, L., Fan, S., & Liu, Y. (2019). Binder jetting of ceramics: Powders, binders, printing parameters, equipment, and post-treatment. Ceramics International, 45(10), 12609-12624. https://doi.org/10.1016/j.ceramint.2019.04.012

Majstorovic, V., Stojadinovic, S., Jakovljevic, Z., Zivkovic, S., Djurdjanovic, D., Kostic, J., & Gligorijevic, N. (2018). Cyber-Physical Manufacturing Metrology Model (CPM3) – Big data analytics issue. Procedia CIRP, 72, 503-508. https://doi.org/10.1016/j.procir.2018.03.091

Mao, Y., Cai, C., Zhang, J., Heng, Y., Feng, K., Cai, D., & Wei, Q. (2023). Effect of sintering temperature on binder jetting additively manufactured stainless steel 316L: densification, microstructure evolution and mechanical properties. Journal of Materials Research and Technology, 22, 2720-2735. https://doi.org/10.1016/j.jmrt.2022.12.096

Matsumoto, M., Yang, S., Martinsen, K., & Kainuma, Y. (2016). Trends and research challenges in remanufacturing. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(1), 129-142. https://doi.org/10.1007/s40684-016-0016-4

Medrano, V., Arrieta, E., Merino, J., Ruvalcaba, B., Caballero, K., Ramirez, B., Diemann, J., Murr, L., Wicker, R., Godfrey, D., Benedict, M., & Medina, F. (2023). A comprehensive and comparative study of microstructure and mechanical properties for post-process heat treatment of AlSi7Mg alloy components fabricated in different laser powder bed fusion systems. Journal of Materials Research and Technology, 24, 6820-6842. https://doi.org/10.1016/j.jmrt.2023.04.129

Miao, G., Moghadasi, M., Li, M., Pei, Z., & Ma, C. (2023). Binder jetting additive manufacturing: Powder packing in shell printing. Journal of Manufacturing and Materials Processing, 7(1), 1-15. https://doi.org/10.3390/jmmp7010004

Mirzababaei, S., & Pasebani, S. (2019). A review on binder jet additive manufacturing of 316L stainless steel. Journal of Manufacturing and Materials Processing, 3(3), 1-36. https://doi.org/10.3390/jmmp3030082

Montoya-Ospina, M., Zeng, J., Tan, X., & Osswald, T. A. (2023). Material extrusion additive manufacturing with polyethylene vitrimers. Polymers, 15(6), 1-14. https://doi.org/10.3390/polym15061332

Mostafaei, A., Elliott, A., Barnes, J., Li, F., Tan, W., Cramer, C., Nandwana, P., & Chmielus, M. (2021). Binder jet 3D printing – Process parameters, materials, properties, modeling, and challenges. Progress in Materials Science, 119, 1-138. https://doi.org/10.1016/j.pmatsci.2020.100707

Nayak, A., Jain, P., & Kankar, P. K. (2019). Progress and issues related to designing and 3D printing of endodontic guide. En U. Chandrasekhar, L. J. Yang & S. Gowthaman (Eds.), Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering (I-DAD 2018) (vol. 2, pp. 331-337). Springer. https://doi.org/10.1007/978-981-13-2718-6_30

Notley, S., Chen, Y., Thacker, N., Lee, P., & Panoutsos, G. (2023). Synchrotron imaging derived relationship between process parameters and build quality for directed energy deposition additively manufactured IN718. Additive Manufacturing Letters, 6, artículo 100137. https://doi.org/10.1016/j.addlet.2023.100137

Öberg, C., & Shams, T. (٢٠١٩). On the verge of disruption: Rethinking position and role – The case of additive manufacturing. Journal of Business & Industrial Marketing, 34(5), 1093-1105. https://doi.org/10.1108/JBIM-10-2018-0293

Olaiya, N., Maraveas, C., Salem, M., Raja, S., Rashedi, A., & Alzahrani, A., El-Bahy, Z., & Olaiya, F. (2022). Viscoelastic and properties of amphiphilic chitin in plasticised polylactic acid/starch biocomposite. Polymers, 14(11), 1-24. https://doi.org/10.3390/polym14112268

Ortega, M., Bardenhagen, A., Rohr, T., & Stoll, E. (2023). Indirect induction sintering of metal parts produced through material extrusion additive manufacturing. Materials, 16(2), 1-24. https://doi.org/10.3390/ma16020885

Paré, G., Trudel, M.C., Jaana, M., & Kitsiou, S. (2015). Synthesizing information systems knowledge: A typology of literature reviews. Information & Management, 52(2), 183-199. https://doi.org/10.1016/j.im.2014.08.008

Paśnikowska-Łukaszuk, M., Korulczyk, K., Kapłon, K., Urzędowski, A., & Wlazło-Ćwiklińska, M. (2022). Time distribution analysis of 3D prints with the use of a filament and masked stereolithography resin 3D printer. Advances in Science and Technology Research Journal, 16(5), 242-249. https://doi.org/10.12913/22998624/154926

Patalas-Maliszewska, J., Topczak, M., & Klos, S. (2020). The level of the additive manufacturing technology use in polish metal and automotive manufacturing enterprises. Applied Sciences, 10(3), 1-20. https://doi.org/10.3390/app10030735

Pricci, A., Al Islam, S., Stano, G., Percoco, G., & Tadesse, Y. (2023). Semi-analytical and numerical models to predict the extrusion force for silicone additive manufacturing, as a function of the process parameters. Additive Manufacturing Letters, 6, 1-12. https://doi.org/10.1016/j.addlet.2023.100147

Raghavendra, S., Jayashree, P., Rita, D., Piras, G., Scheider, D., Chemello, M., & Benedetti, M. (2023). Wear and material characterization of CuSn10 additively manufactured using directed energy deposition. Additive Manufacturing Letters, 6, 1-10. https://doi.org/10.1016/j.addlet.2023.100136

Raja, S., & Rajan, A. (2023). Challenges and opportunities in additive manufacturing polymer technology: A review based on optimization perspective. Advances in Polymer Technology, 2023(1), 1-18. https://doi.org/10.1155/2023/8639185

Rambo, C., Travitzky, N., Zimmermann, K., & Greil, P. (2005). Synthesis of TiC/Ti-Cu composites by pressureless reactive infiltration of TiCu alloy into carbon preforms fabricated by 3D-printing. Materials Letters, 59(8-9), 1028-1031. https://doi.org/10.1016/j.matlet.2004.11.051

Roos, S., Botero, C., & Rännar, L. E. (2023). Electron beam powder bed fusion processing of 2507 super duplex stainless steel. as-built phase composition and microstructural properties. Journal of Materials Research and Technology, 24, 6473-6483. https://doi.org/10.1016/j.jmrt.2023.04.230

Rosado, E., & Moreno, R. (2023). Mullite-silica scaffolds obtained by stereolithography and reaction sintering. Open Ceramics, 14, 1-8. https://doi.org/10.1016/j.oceram.2023.100361

Saboori, A., Aversa, A., Marchese, G., Biamino, S., Lombardi, M., & Fino, P. (2019). Application of directed energy deposition-based additive manufacturing in repair. Applied Sciences, 9(16), 1-26. https://doi.org/10.3390/app9163316

Salehi, M., Kuah, K., Ho, J. H., Zhang, S., Seet, H., & Nai, M.. (2023). Towards binder jetting and sintering of AZ91 magnesium powder. Crystals, 13(2), 1-17. https://doi.org/10.3390/cryst13020286

Sargent, N., Wang, Y., Li, D., Zhao, Y., Wang, X., & Xiong, W. (2023). Exploring alloy design pathway through directed energy deposition of powder mixtures: A study of Stainless Steel 316L and Inconel 718. Additive Manufacturing Letters, 6, 1-9. https://doi.org/10.1016/j.addlet.2023.100133

Savolainen, J., & Collan, M. (2020). How additive manufacturing technology changes business models? Review of literature. Additive Manufacturing, 32, 1-13. https://doi.org/10.1016/j.addma.2020.101070

Schmidt, C., Finsterwalder, F., Griesbaum, R., & Sehrt, T. (2023). Determination of factory locations for distributed additive manufacturing, considering pollution, resilience and costs. CIRP Journal of Manufacturing Science and Technology, 43, 115-128. https://doi.org/10.1016/j.cirpj.2023.03.005

Şimşir, M., Kumruoğlu, L., & Özer, A. (٢٠٠٩). An investigation into stainless-steel/structural-alloy-steel bimetal produced by shell mould casting. Materials & Design, 30(2), 264-270. https://doi.org/10.1016/j.matdes.2008.04.074

Song, Q., Chen, Y., Hou, P., Zhu, P., Helmer, D., Kotz-Helmer. F., & Rapp, B. (2023). Fabrication of multi-material pneumatic actuators and microactuators using stereolithography. Micromachines, 14(2), 1-10. https://doi.org/10.3390/mi14020244

Spirrett, F., Ito, T., & Kirihara, S. (2022). High-speed alumina stereolithography. Applied Sciences, 12(19), 1-11. https://doi.org/10.3390/app12199760

Stavropoulos, P., Foteinopoulos, P., Stavridis, J., & Bikas, H. (2023). Increasing the industrial uptake of additive manufacturing processes: A training framework. Advances in Industrial and Manufacturing Engineering, 6, 1-17. https://doi.org/10.1016/j.aime.2022.100110

Sun, J., Peng, Z., Zhou, W., Fuh, J., Hong, G., & Chiu, A. (2015). A review on 3D printing for customized food fabrication. Procedia Manufacturing, 1, 308-319. https://doi.org/10.1016/j.promfg.2015.09.057

Sundarkumar, V., Nagy, Z., & Reklaitis, G. (2022). Small-scale continuos drug product manufacturing using dropwise additive manufacturing and three phase settling for integration with upstream drug substance production. Journal of Pharmaceutical Sciences, 111(8), 2330-2340. https://doi.org/10.1016/j.xphs.2022.03.009

Tan, W., Koo, C., Lau, W., Chong, W., & Tey, J. (2022). Recent advances in 3D printed membranes for water applications. En H.-H. Tseng, W. J. Lau, M. A. Al-Ghouti & L. An (Eds.), 60 Years of the Loeb-Sourirajan Membrane (pp. 71-96). Elsevier. https://doi.org/10.1016/B978-0-323-89977-2.00012-9

Wadhwani, V., Sivaswamy, V., & Rajaraman, V. (2022). Surface roughness and marginal adaptation of stereolithography versus digital light processing three dimensional printed resins. An in-vitro study. The Journal of Indian Prosthodontic Society, 22(4), 377-381. https://doi.org/10.4103/jips.jips_8_22

Wang, J., Goyanes, A., Gaisford, S., & Basit, A. (2016). Stereolithographic (SLA) 3D printing of oral modified-release dosage forms. International Journal of Pharmaceutics, 503(1-2), 207-212. https://doi.org/10.1016/j.ijpharm.2016.03.016

Wang, Y., & Zhao, Y. F. (2017). Investigation of sintering shrinkage in binder jetting additive manufacturing process. Procedia Manufacturing, 10, 779-790. https://doi.org/10.1016/j.promfg.2017.07.077

Wang, N., Chang, H., Zhang, C., Wu, Y., Yang, R., Zhang, X., & Zhai, Z. (2023). Preparation of high-stability ceramic slurry with gel behavior for stereolithography 3D printing. Materials, 16(7), 1-19. https://doi.org/10.3390/ma16072816

Xie, H., Tang, X., Chen, X., Sun, F., Dong, L., Tan, Y., Chu, H., Liu, P., & Fu, S. (2023). The effect of build orientations on mechanical and thermal properties on CuCrZr alloys fabricated by laser powder bed fusion. Journal of Materials Research and Technology, 23, 3322-3336. https://doi.org/10.1016/j.jmrt.2023.01.218

Xu, M., Guo, H., Wang, Y., Hou, Y., Dong, Z., & Zhang, L. (2023). Mechanical properties and microstructural characteristics of 316L stainless steel fabricated by laser powder bed fusion and binder jetting. Journal of Materials Research and Technology, 24, 4427-4439. https://doi.org/10.1016/j.jmrt.2023.04.069

Yang, F., Wang, J., Wen, T., Ai, X., Dong, X., Yang, H., & Ji, S. (2023). Microstructure and mechanical properties of pseudo binary eutectic Al-Mg2Si alloy processed by laser powder bed fusion. Journal of Materials Research and Technology, 24, 2187-2199. https://doi.org/10.1016/j.jmrt.2023.03.147

Ye, G., Jiao, Y., Zhou, P., Sun, J., Zhu, L., Gong, F., Bai, J., Liu. G., Yan, M., & Zhang, R. (2023). Preparation of silicon carbide ceramic slurry for stereolithography based additive manufacturing. Processing and Application of Ceramics, 17(1), 47-54. https://doi.org/10.2298/PAC2301047Y

Yi, Y. J., Lee, M. J., Yun, S. J., Park, M., Kim, J. Y., Lee, J., & Yun, J. Y. (2022). Fabrication of metal gas filter by material extrusion additive manufacturing process. Archives of Metallurgy and Materials, 67(4), 1517-1520. https://doi.org/10.24425/amm.2022.141085

Zhang, C., Liu, T., Liao, W., Wei, H., & Zhang, L. (2023). Investigation of the laser powder bed fusion process of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy. Chinese Journal of Mechanical Engineering, 36(32), 1-13. https://doi.org/10.1186/s10033-023-00863-z

Zhao, C., Cai, J., Zhang, B., & Qu, X. (2023). Key technology of binder jet 3D printing. Journal of Materials Engineering, 51(5), 14-26. https://www.sciengine.com/JME/doi/10.11868/j.issn.1001-4381.2021.000581

Zimenko, K., Afanasiev, M., & Kolesnikov, M. (2022). Pressure control in material extrusion additive manufacturing. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 22(5), 929-940. https://doi.org/10.17586/2226-1494-2022-22-5-929-940

Publicado
2024-12-11
Cómo citar
Díaz-Martínez, M. A., Román-Salinas, R. V., Ruíz-Hernández, S., Hernández-Cortés, N. A., & González-Rubín, V. I. (2024). La manufactura aditiva como elemento imprescindible de la industria 4.0 en beneficio de la ingeniería: un análisis bibliométrico. Ingeniería Industrial, (47), 209-238. https://doi.org/10.26439/ing.ind2024.n47.7153
Sección
Ciencia y tecnología / Science and technology