Comparación de modelos cinéticos isotérmicos durante la adsorción de plomo mediante Azolla caroliniana
Resumen
Los metales pesados constituyen un riesgo para la salud pública de las poblaciones que consumen agua contaminada por estos elementos químicos. En este sentido, el tratamiento de aguas residuales que incorpore la remoción de iones metálicos es causa de múltiples investigaciones a nivel mundial. El objetivo de esta investigación fue determinar la capacidad de remoción del plomo (Pb) presente en aguas sintéticas y la intensidad de adsorción del helecho Azolla caroliniana por este metal. Se utilizó un espectrofotómetro de absorción atómica para determinar la concentración del plomo adsorbido. A partir del gráfico de isotermas de Langmuir se determinó que, para los 4 reactores utilizados, el tipo de sistema isotérmico era desfavorable para esta isoterma (RL’s mayor a 1). Por su parte, las gráficas de las isotermas de Freundlich para los 4 reactores permitieron establecer los modelos lineales del comportamiento cinético de la adsorción de plomo mediante Azolla caroliniana, obteniendo el mejor R2 y la mayor intensidad de adsorción (n) de Pb (0,122) para el reactor D (30 ppm de Pb).
Descargas
Citas
Ahmady-Asbchin, S., Nasrollahi, A., & Jafari, N. (2012). Potential of Azolla filiculoides in the removal of Ni and Cu from wastewaters. African Journal of Biotechnology, 11(95), 16158-16164. https://www.ajol.info/index.php/ajb/article/view/129788
Altamirano Pavón, M. (2015). Remoción de Pb (II) por medio de adsorción en quitosano [Tesis de grado, Universidad de Veracruzana].
Barceló, J., & Poschenrieder, C. (2003). Phytoremediation: principles and perspectives. Contributions to Science , 2(3), 333-344.
Bennielli, R., Stepniewska, Z., Banach, A., Szajnocha, K., & Ostrowski, J. (2004). The ability of Azolla caroliniana to remove heavy metals (Hg(II), Cr(III), Cr(VI)) from municipal waste water. Chemosphere, 55(1), 141-146. https://www.ajol.info/index.php/ajb/article/view/129788
Carvajal-Bernal, A. M., Gómez, F., Giraldo, L., & Moreno-Piraján, J. C. (2018). Estudio de la adsorción de 4-nitrofenol desde solución acuosa sobre un carbón activado con heteroátomos nitrogenados en la superficie: aplicación del Modelo de Sips. Revista Colombiana de Química, 47(1), 27-33. https://repositorio.unal.edu.co/handle/unal/66255
Cuizano, N. A., Reyes, Ú. F., Domínguez, S., Llanos, B. P., & Navarro, A. E. (2010). Relevancia del pH en la adsorción de iones. Revista de la Sociedad Química del Perú, 76(2), 123-130.
Dávila Molina, C. G., & Bonilla, P. (2011). Optimización del proceso de adsorción de plomo con quitosano modificado para ser utilizado en el tratamiento de aguas. Química Central, 2(1), 19-22. https://doi.org/10.29166/quimica.v2i1.542
Herrejón, M., Limón, B., & Martínez, V. (2008). Cinética e isotermas de adsorción de Pb (II) en suelo de Monterrey. Ingenierías, 11(41), 24-31. http://eprints.uanl.mx/id/eprint/10396
Maldonado, A., Luque, C., & Urquizo, D. (2012). Biosorción de plomo de aguas contaminadas utilizando Pennisetum clandestinum Hochst (KIKUYO). Revista Latinoamericana de Metalurgia y Materiales, 52-57. https://www.rlmm.org/ojs/index.php/rlmm/article/view/347
Ordoñez, J., & Moreno, R. (2013). Estudio del aprovechamiento de residuos orgánicos de cultivos de flores (tallos de rosas) como bioadsorbente de Cd para el tratamiento de aguas residuales [Tesis de grado, Universidad Politécnica Salesiana, Cuenca]. https://dspace.ups.edu.ec/handle/123456789/4272
Ortega, S., & Sánchez, D. (2019). Evaluación de la capacidad de remoción de cromo de Eichhornia crassipes y Azolla sp. con miras a su aplicación como tratamiento complementario de aguas residuales de la industria galvanotécnica [Tesis de grado, Universidad de la Salle]. https://ciencia.lasalle.edu.co/ing_ambiental_sanitaria/1137/
Pérez, L., Salgado, I., Larrea, C., Martínez, A., Cruz, M., & Carballo, M. (2018). Biosorción microbiana de metales pesados: características del proceso. Revista Cubana de CIencias Biológicas, 6(1).
Rai, P. K. (2008). Technical note: Phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte Azolla Pinnata. International Journal of Phytoremediation, 10(5), 430-439. https://doi.org/10.1080/15226510802100606
Rodríguez, A., Cuéllar, L., Maldonado, G., & Suardiaz, M. (2016). Efectos nocivos del plomo para la salud del hombre. Revista Cubana de Investigaciones Biomédicas, 35(3), 251-271. https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=70505
Saeed, A., Akhter, M., & Iqbal, M. (2005). Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent. Separation and Purification Technology, 45(1), 25-31. doi:https://doi.org/10.1016/j.seppur.2005.02.004
Sánchez, N., Subero, N., & Rivero, C. (2011). Determinación de la adsorción de cadmio mediante isotermas de adsorción en suelos agrícolas venezolanos. Acta Agronómica, 60(2), 190-197. https://www.redalyc.org/articulo.oa?id=169922373011
Sharma, P., & Dubey, R. (2005). Lead toxicity in plants. Brazilian Journal of Plant Physiology, 17(1), 35-52. http://dx.doi.org/10.1590/S1677-04202005000100004
Shmaefsky, B. (2020). Phytoremediation. Concepts and strategies in plant sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-00099-8
Siccha, A. (2012). Eficacia de la biosorción de Plomo mediante cochayuyo pre-tratado (Chondracanthus chamissoi) [Tesis de grado, Universidad Nacional del Callao]. https://www.unac.edu.pe/documentos/organizacion/vri/cdcitra/Informes_Finales_Investigacion/Febrero2012/IF_SICCHA%20MACASSI_FCS.pdf
Suthar, V., Memon, K., & Mahmood-ul-Hassan. (2014). EDTA-enhanced phytoremediation of contaminated calcareous soils: heavy metal bioavailability, extractability, and uptake by maize and sesbania. Environmental Monitoring and Assessment, 186(6), 3957-3968. https://doi.org/10.1007/s10661-014-3671-3
Tejada-Tovar, C., Villabona-Ortiz, A., & Garcés-Jaraba, L. (2015). Adsorción de metales pesados en aguas residuales usando materiales de origen biológico. Tecno Lógicas, 18(34), 109-123.
Tejada-Tovar, C., Villabona-Ortiz, Á., & Núñez-Zarur, J. (2015). Uso de biomasas para la adsorción de plomo, níquel, mercurio y cromo. Ingenium, 9(24), 41-51.
Tur-Naranjo, L. E., Orberá-Ratón, M. T., Romagosa-Álvarez, Y., & Pérez-Silva, D. R. (2013). Bioadsorción de plomo (II) por biomasa microbiana seca: Efecto del pH. Revista Cubana de Química, XXV(1), 75-81. https://www.redalyc.org/articulo.oa?id=443543730010
Vallejo, M. (2021). Utilización de Lacasa de Pleurotus ostreatus y su biomasa residual para la degradación de colorantes azoicos y la remoción de metales en aguas residuales [Tesis de doctorado, Benemérita Universidad Autónoma de Puebla]. https://hdl.handle.net/20.500.12371/12695
Villalón, M. F., Lamela, O. C., Adrian, D., & Silva, R. M. (2018). Factores de mayor influencia en la adsorción de metales pesados por biomasa seca de Kluyveromyces Marxianus CCEBI 2011. Tecnología Química, 38(2), 335-345.
Vizcaino Mendoza, L., & Fuentes Molina, N. (2015). Biosorción de Cd, Pb y Zn por biomasa pretratada de algas rojas, cáscara de naranja y tuna. Ciencia e Ingeniería Neogranadina, 25(1), 43-60.