Una revisión de las implementaciones de sistemas para la identificación de tendencias de la diabetes

Palabras clave: diabetes mellitus, identificación de tendencias, software preventivo, métodos de construcción, regresión logística, redes neuronales artificiales

Resumen

La diabetes mellitus es una enfermedad crónica que aparece cuando el páncreas no secreta suficiente insulina o cuando el organismo no utiliza apropiadamente la insulina que produce. Dado que la insulina es una hormona que regula la concentración de glucosa en la sangre, uno de los efectos más comunes de la diabetes no controlada es la hiperglucemia, que con el tiempo daña gravemente muchos órganos y sistemas del cuerpo. Por ello, es importante el desarrollo de software predictivo para el diagnóstico y posterior tratamiento de esta enfermedad, en particular para la diabetes tipo 1 y 2, que concentran la mayoría de los casos. El presente trabajo realiza una revisión sistemática de literatura a fin de determinar los métodos
y la problemática en la construcción de sistemas de identificación de tendencias orientados a la diabetes. Los resultados muestran 16 métodos diferentes de construcción utilizados en estos sistemas, de los cuales los más eficientes son la regresión logística y las redes neuronales artificiales.

Descargas

La descarga de datos todavía no está disponible.

Citas

Ahmed, U., Issa, G. F., Khan, M. A., Aftab, S., Khan, M. F., & Said, R. A. T. (2022). Prediction of diabetes empowered with fused machine learning. IEEE Access, 10, 8529-8538. https://doi.org/10.1109/ACCESS.2022.3142097

Asgari, S., Khalili, D., & Hosseinpanah, F. (2021). Prediction models for type 2 diabetes risk in the general population: A systematic review of observational studies. International Journal of Endocrinology and Metabolism, 19(3). https://doi.org/10.5812/ijem.109206.Systematic

Barbaresko, J., Neuenschwander, M., Schwingshackl, L., & Schlesinger, S. (2019). Dietary factors and diabetes related health outcomes in patients with type 2 diabetes: Protocol for a systematic review and meta-analysis of prospective observational studies. BMJ Open, 9(7). https://doi.org/10.1136/bmjopen-2018-027298

Castelyn, G., Laranjo, L., Schreier, G., & Gallego, B. (2021a). Predictive performance and impact of algorithms in remote monitoring of chronic conditions: A systematic review and meta-analysis. International Journal of Medical Informatics, 156, 104620. https://doi.org/10.1016/j.ijmedinf.2021.104620

Castelyn, G., Laranjo, L., Schreier, G., & Gallego, B. (2021b). Predictive performance and impact of algorithms in remote monitoring of chronic conditions: A systematic review and meta-analysis. International Journal of Medical

Informatics, 156, 104620. https://doi.org/10.1016/j.ijmedinf.2021.104620

Chaki, J., Thillai Ganesh, S., Cidham, S. K., & Ananda Theertan, S. (2020). Machine learning and artificial intelligence based diabetes mellitus detection and self-management: A systematic review. Journal of King Saud University - Computer and Information Sciences, 34, 3204-3225. https://doi.org/10.1016/j.jksuci.2020.06.013

Cicek, M., Buckley, J., Pearson-Stuttard, J., & Gregg, E. W. (2021). Characterizing multimorbidity from type 2 diabetes: Insights from clustering approaches. Endocrinology and Metabolism Clinics of North America, 50(3), 531-558. https://doi.org/10.1016/j.ecl.2021.05.012

De Silva, K., Jönsson, D., & Demmer, R. T. (2020). A combined strategy of feature selection and machine learning to identify predictors of prediabetes. Journal of the American Medical Informatics Association, 27(3), 396-406. https://doi.org/10.1093/jamia/ocz204

De Silva, K., Lee, W. K., Forbes, A., Demmer, R. T., Barton, C., & Enticott, J. (2020). Use and performance of machine learning models for type 2 diabetes prediction in community settings: A systematic review and meta-analysis. International Journal of Medical Informatics, 143, 104268. https://doi.org/10.1016/j.ijmedinf.2020.104268

De Silva, K., Lim, S., Mousa, A., Teede, H., Forbes, A., Demmer, R. T., Jönsson, D., & Enticott, J. (2021). Nutritional markers of undiagnosed type 2 diabetes in adults: Findings of a machine learning analysis with external validation and benchmarking. PLOS ONE, 16(5), e0250832. https://doi.org/10.1371/journal.pone.0250832

Diouri, O., Cigler, M., Vettoretti, M., Mader, J. K., Choudhary, P., & Renard, E. (2021). Hypoglycaemia detection and prediction techniques: A systematic review on the latest developments. Diabetes/Metabolism Research and Reviews, 37(7), e3449. https://doi.org/10.1002/dmrr.3449

Domingo-Lopez, D. A., Lattanzi, G., H. J. Schreiber, L., Wallace, E. J., Wylie, R., O’Sullivan, J., Dolan, E. B., & Duffy, G. P. (2022). Medical devices, smart drug delivery, wearables and technology for the treatment of diabetes mellitus. Advanced Drug Delivery Reviews, 185, 114280. https://doi.org/10.1016/j.addr.2022.114280

Eberle, C., Loehnert, M., & Stichling, S. (2021). Clinical effectiveness of different technologies for diabetes in pregnancy: Systematic literature review. Journal of Medical Internet Research, 23(4). https://doi.org/10.2196/24982

Farmanfarma, K. H. K., Zareban, I., & Adineh, H. A. (2020). Prevalence of type 2 diabetes in Middle-East: Systematic review & meta-analysis. Primary Care Diabetes, 14(4), 297-304. https://doi.org/10.1016/j.pcd.2020.01.003

Felizardo, V., Garcia, N. M., Pombo, N., & Megdiche, I. (2021). Data-based algorithms and models using diabetics real data for blood glucose and hypoglycaemia prediction – A systematic literature review. Artificial Intelligence in Medicine, 118, 102120. https://doi.org/10.1016/j.artmed.2021.102120

Fitriyani, N. L., Syafrudin, M., Alfian, G., & Rhee, J. (2019). Development of disease prediction model based on ensemble learning approach for diabetes and hypertension. IEEE Access, 7, 144777-144789. https://doi.org/10.1109/ACCESS.2019.2945129

Fregoso-Aparicio, L. F., Noguez, J., Montesinos, L., & García, J. A. G. (2021). Machine learning and deep learning predictive models for type 2 diabetes: A systematic review. Diabetology & Metabolic Syndrome, 13. https://doi.org/10.1186/s13098-021-00767-9

Galbete, A., Tamayo, I., Librero, J., Enguita-Germán, M., Cambra, K., & Ibáñez-Beroiz, B. (2022). Cardiovascular risk in patients with type 2 diabetes: A systematic review of prediction models. Diabetes Research and Clinical Practice, 184. https://doi.org/10.1016/j.diabres.2021.109089

Gandevani, S. B., Amiri, M., Yarandi, R. B., & Tehrani, F. R. (2019). The impact of diagnostic criteria for gestational diabetes on its prevalence: A systematic review and meta-analysis. Diabetology & Metabolic Syndrome, 11, 1-18. https://doi.org/10.1186/s13098-019-0406-1

Gautier, T., Ziegler, L. B., Gerber, M. S., Campos-Náñez, E., & Patek, S. D. (2021). Artificial intelligence and diabetes technology: A review. Metabolism: Clinical and Experimental, 124. https://doi.org/10.1016/j.metabol.2021.154872

Haghi Kashani, M., Madanipour, M., Nikravan, M., Asghari, P., & Mahdipour, E. (2021). A systematic review of IoT in healthcare: Applications, techniques, and trends. Journal of Network and Computer Applications, 192, 103164. https://doi.org/10.1016/j.jnca.2021.103164

Hong, N., Park, H., & Rhee, Y. (2020). Machine learning applications in endocrinology and metabolism research: An overview. Endocrinology and Metabolism, 35(1), 71-84. https://doi.org/10.3803/EnM.2020.35.1.71

Jaiswal, V., Negi, A., & Pal, T. (2021). A review on current advances in machine learning based diabetes prediction. Primary Care Diabetes, 15(3), 435-443. https://doi.org/10.1016/j.pcd.2021.02.005

Kattini, R., Hummelen, R., & Kelly, L. (2020). Early gestational diabetes mellitus screening with glycated hemoglobin: A systematic review. Journal of Obstetrics and Gynaecology Canada, 42(11), 1379-1384. https://doi.org/10.1016/j.jogc.2019.12.015

Khan, F. A., Zeb, K., Al-Rakhami, M., Derhab, A., & Bukhari, S. A. C. (2021). Detection and prediction of diabetes using data mining: A comprehensive review. IEEE Access, 9, 43711-43735. https://doi.org/10.1109/ACCESS.2021.3059343

Kodama, S., Fujihara, K., Horikawa, C., Kitazawa, M., Iwanaga, M., Kato, K., Watanabe, K., Nakagawa, Y., Matsuzaka, T., Shimano, H., & Sone, H. (2022). Predictive ability of current machine learning algorithms for type 2 diabetes mellitus: A meta-analysis. Journal of Diabetes Investigation, 13(5), 900-908. https://doi.org/10.1111/jdi.13736

Kvitkina, T., Narres, M., Claessen, H., Metzendorf, M. I., Richter, B., & Icks, A. (2020). Incidence of stroke in the diabetic compared with the non-diabetic population: A systematic review protocol. Diabetes/Metabolism Research and Reviews, 36(6). https://doi.org/10.1002/dmrr.3311

Li, K., Daniels, J., Liu, C., Herrero, P., & Georgiou, P. (2020). Convolutional recurrent neural networks for glucose prediction. IEEE Journal of Biomedical and Health Informatics, 24(2), 603-613. https://doi.org/10.1109/JBHI.2019.2908488

Madhava, P. S., & Verma, S. (2019). A systematic literature review for early detection of type ii diabetes. En 2019 5th International Conference on Advanced Computing and Communication Systems (ICACCS) (pp. 220-224). https://doi.org/10.1109/ICACCS.2019.8728377

Magliano, D. J., Islam, R. M., Barr, E. L. M., Gregg, E. W., Pavkov, M. E., Harding, J. L., Tabesh, M., Koye, D. N., & Shaw, J. E. (2019). Trends in incidence of total or type 2 diabetes: Systematic review. BMJ, 366. https://doi.org/10.1136/bmj.l5003

Nuankaew, P., Chaising, S., & Temdee, P. (2021). Average weighted objective distance-based method for type 2 diabetes prediction. IEEE Access, 9, 137015-137028. https://doi.org/10.1109/ACCESS.2021.3117269

Pease, A., Lo, C., Earnest, A., Kiriakova, V., Liew, D., & Zoungas, S. (2019). The efficacy of technology in type 1 diabetes: A systematic review, network meta-analysis, and narrative synthesis. Diabetes Technology & Therapeutics, 22(5), 411-421. https://doi.org/10.1089/dia.2019.0417

Peer, N., Balakrishna, Y., & Durao, S. (2020). Screening for type 2 diabetes mellitus. Cochrane Database of Systematic Reviews, 5. https://doi.org/10.1002/14651858.CD005266.pub2

Ray, A., & Chaudhuri, A. K. (2021). Smart healthcare disease diagnosis and patient management: Innovation, improvement and skill development. Machine Learning with Applications, 3, 100011. https://doi.org/10.1016/j.mlwa.2020.100011

Safaei, M., Sundararajan, E. A., Driss, M., Boulila, W., & Shapi’i, A. (2021). A systematic literature review on obesity: Understanding the causes & consequences of obesity and reviewing various machine learning approaches used to predict obesity. Computers in Biology and Medicine, 136, 104754. https://doi.org/10.1016/j.compbiomed.2021.104754

Santos, D. S., Regina, C., Batistelli, S., & Marilac, M. (2022). The effectiveness of the use of telehealth programs in the care of individuals with hypertension and, or diabetes mellitus: Systematic review and meta-analysis. Diabetology & Metabolic Syndrome, 14, 76. https://doi.org/10.1186/s13098-022-00846-5

Schwartz, J. L., Tseng, E., Maruthur, N. M., & Rouhizadeh, M. (2022). Identification of prediabetes discussions in unstructured clinical documentation: Validation of a natural language processing algorithm. Journal of Medical Internet Research, 10(2). https://doi.org/10.2196/29803

Shahid, A. H., & Singh, M. P. (2019). Computational intelligence techniques for medical diagnosis and prognosis: Problems and current developments. Biocybernetics and Biomedical Engineering, 39(3), 638-672. https://doi.org/10.1016/j.bbe.2019.05.010

Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104, 333-339. https://doi.org/10.1016/j.jbusres.2019.07.039

Tuppad, A., & Patil, S. D. (2022). Machine learning for diabetes clinical decision support: A review. Advances in Computational Intelligence, 2(2), 1-24. https://doi.org/10.1007/s43674-022-00034-y

Vounzoulaki, E., Khunti, K., Abner, S. C., Tan, B. K., Davies, M. J., & Gillies, C. L. (2020). Progression to type 2 diabetes in women with a known history of gestational diabetes: Systematic review and meta-analysis. BMJ, 369, m1361. https://doi.org/10.1136/bmj.m1361

Wang, Q., Cao, W., Guo, J., Ren, J., Cheng, Y., & Davis, D. N. (2019). DMP_MI: An effective diabetes mellitus classification algorithm on imbalanced data with missing values. IEEE Access, 7, 102232-102238. https://doi.org/10.1109/ACCESS.2019.2929866

Wang, Y., Liu, D., Li, X., Liu, Y., & Wu, Y. (2021). Antidepressants use and the risk of type 2 diabetes mellitus: A systematic review and meta-analysis. Journal of Affective Disorders, 287(45), 41-53. https://doi.org/10.1016/j.jad.2021.03.023

Woldaregay, A. Z., Årsand, E., Walderhaug, S., Albers, D., Mamykina, L., Botsis, T., & Hartvigsen, G. (2019). Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes. Artificial Intelligence in Medicine, 98, 109-134. https://doi.org/10.1016/j.artmed.2019.07.007

Xie, J., & Wang, Q. (2020). Benchmarking machine learning algorithms on blood glucose prediction for type i diabetes in comparison with classical time-series models. IEEE Transactions on Biomedical Engineering, 67(11), 101-3124. https://doi.org/10.1109/TBME.2020.2975959

Zaitcev, A., Eissa, M. R., Hui, Z., Good, T., Elliott, J., & Benaissa, M. (2020). A deep neural network application for improved prediction of HbA 1c in type 1 diabetes. IEEE Journal of Biomedical and Health Informatics, 24(10), 2932-2941. https://doi.org/10.1109/JBHI.2020.2967546

Zhang, H., Shao, J., Chen, D., Zou, P., Ciu, N., Tang, L., Wang, D., & Ye, Z. (2020). Reporting and methods in developing prognostic prediction models for metabolic syndrome: A systematic review and critical appraisal. Diabetes, Metabolic Syndrome and Obesity, 13, 4981-4992.

Zhang, Z., Yang, L., Han, W., Wu, Y., Zhang, L., Gao, C., Jiang, K., Liu, Y., & Wu, H. (2022). Machine learning prediction models for gestational diabetes mellitus: Meta-analysis. Journal of Medical Internet Research, 24(3). https://doi.org/10.2196/26634

Zheng, M., Bernardo, C. O., Stocks, N., & Gonzalez-Chica, D. (2022). Diabetes mellitus diagnosis and screening in Australian general practice: A national study. Journal of Diabetes Research. DOI: 10.1155/2022/156640

Zhu, T., Li, K., Herrero, P., & Georgiou, P. (2021). Deep learning for diabetes: A systematic review. IEEE Journal of Biomedical and Health Informatics, 25(7), 2744-2757. https://doi.org/10.1109/JBHI.2020.3040225

Zimmerman, J., Soler, R. E., Lavinder, J., Murphy, S., Atkins, C., Hulbert, L., Lusk, R., & Ng, B. P. (2021). Iterative guided machine learning-assisted systematic literature reviews: A diabetes case study. Systematic Reviews, 10, 97. https://doi.org/10.1186/s13643-021-01640-6

Publicado
2022-12-23
Cómo citar
Benites Loja, R. I., & Coral Ygnacio, M. A. (2022). Una revisión de las implementaciones de sistemas para la identificación de tendencias de la diabetes. Interfases, 16(016), 231-251. https://doi.org/10.26439/interfases2022.n016.5957
Sección
Artículos de revisión

Artículos más leídos del mismo autor/a