Una revisión de las implementaciones de sistemas para la identificación de tendencias de la diabetes
Resumen
La diabetes mellitus es una enfermedad crónica que aparece cuando el páncreas no secreta suficiente insulina o cuando el organismo no utiliza apropiadamente la insulina que produce. Dado que la insulina es una hormona que regula la concentración de glucosa en la sangre, uno de los efectos más comunes de la diabetes no controlada es la hiperglucemia, que con el tiempo daña gravemente muchos órganos y sistemas del cuerpo. Por ello, es importante el desarrollo de software predictivo para el diagnóstico y posterior tratamiento de esta enfermedad, en particular para la diabetes tipo 1 y 2, que concentran la mayoría de los casos. El presente trabajo realiza una revisión sistemática de literatura a fin de determinar los métodos
y la problemática en la construcción de sistemas de identificación de tendencias orientados a la diabetes. Los resultados muestran 16 métodos diferentes de construcción utilizados en estos sistemas, de los cuales los más eficientes son la regresión logística y las redes neuronales artificiales.
Descargas
Citas
Ahmed, U., Issa, G. F., Khan, M. A., Aftab, S., Khan, M. F., & Said, R. A. T. (2022). Prediction of diabetes empowered with fused machine learning. IEEE Access, 10, 8529-8538. https://doi.org/10.1109/ACCESS.2022.3142097
Asgari, S., Khalili, D., & Hosseinpanah, F. (2021). Prediction models for type 2 diabetes risk in the general population: A systematic review of observational studies. International Journal of Endocrinology and Metabolism, 19(3). https://doi.org/10.5812/ijem.109206.Systematic
Barbaresko, J., Neuenschwander, M., Schwingshackl, L., & Schlesinger, S. (2019). Dietary factors and diabetes related health outcomes in patients with type 2 diabetes: Protocol for a systematic review and meta-analysis of prospective observational studies. BMJ Open, 9(7). https://doi.org/10.1136/bmjopen-2018-027298
Castelyn, G., Laranjo, L., Schreier, G., & Gallego, B. (2021a). Predictive performance and impact of algorithms in remote monitoring of chronic conditions: A systematic review and meta-analysis. International Journal of Medical Informatics, 156, 104620. https://doi.org/10.1016/j.ijmedinf.2021.104620
Castelyn, G., Laranjo, L., Schreier, G., & Gallego, B. (2021b). Predictive performance and impact of algorithms in remote monitoring of chronic conditions: A systematic review and meta-analysis. International Journal of Medical
Informatics, 156, 104620. https://doi.org/10.1016/j.ijmedinf.2021.104620
Chaki, J., Thillai Ganesh, S., Cidham, S. K., & Ananda Theertan, S. (2020). Machine learning and artificial intelligence based diabetes mellitus detection and self-management: A systematic review. Journal of King Saud University - Computer and Information Sciences, 34, 3204-3225. https://doi.org/10.1016/j.jksuci.2020.06.013
Cicek, M., Buckley, J., Pearson-Stuttard, J., & Gregg, E. W. (2021). Characterizing multimorbidity from type 2 diabetes: Insights from clustering approaches. Endocrinology and Metabolism Clinics of North America, 50(3), 531-558. https://doi.org/10.1016/j.ecl.2021.05.012
De Silva, K., Jönsson, D., & Demmer, R. T. (2020). A combined strategy of feature selection and machine learning to identify predictors of prediabetes. Journal of the American Medical Informatics Association, 27(3), 396-406. https://doi.org/10.1093/jamia/ocz204
De Silva, K., Lee, W. K., Forbes, A., Demmer, R. T., Barton, C., & Enticott, J. (2020). Use and performance of machine learning models for type 2 diabetes prediction in community settings: A systematic review and meta-analysis. International Journal of Medical Informatics, 143, 104268. https://doi.org/10.1016/j.ijmedinf.2020.104268
De Silva, K., Lim, S., Mousa, A., Teede, H., Forbes, A., Demmer, R. T., Jönsson, D., & Enticott, J. (2021). Nutritional markers of undiagnosed type 2 diabetes in adults: Findings of a machine learning analysis with external validation and benchmarking. PLOS ONE, 16(5), e0250832. https://doi.org/10.1371/journal.pone.0250832
Diouri, O., Cigler, M., Vettoretti, M., Mader, J. K., Choudhary, P., & Renard, E. (2021). Hypoglycaemia detection and prediction techniques: A systematic review on the latest developments. Diabetes/Metabolism Research and Reviews, 37(7), e3449. https://doi.org/10.1002/dmrr.3449
Domingo-Lopez, D. A., Lattanzi, G., H. J. Schreiber, L., Wallace, E. J., Wylie, R., O’Sullivan, J., Dolan, E. B., & Duffy, G. P. (2022). Medical devices, smart drug delivery, wearables and technology for the treatment of diabetes mellitus. Advanced Drug Delivery Reviews, 185, 114280. https://doi.org/10.1016/j.addr.2022.114280
Eberle, C., Loehnert, M., & Stichling, S. (2021). Clinical effectiveness of different technologies for diabetes in pregnancy: Systematic literature review. Journal of Medical Internet Research, 23(4). https://doi.org/10.2196/24982
Farmanfarma, K. H. K., Zareban, I., & Adineh, H. A. (2020). Prevalence of type 2 diabetes in Middle-East: Systematic review & meta-analysis. Primary Care Diabetes, 14(4), 297-304. https://doi.org/10.1016/j.pcd.2020.01.003
Felizardo, V., Garcia, N. M., Pombo, N., & Megdiche, I. (2021). Data-based algorithms and models using diabetics real data for blood glucose and hypoglycaemia prediction – A systematic literature review. Artificial Intelligence in Medicine, 118, 102120. https://doi.org/10.1016/j.artmed.2021.102120
Fitriyani, N. L., Syafrudin, M., Alfian, G., & Rhee, J. (2019). Development of disease prediction model based on ensemble learning approach for diabetes and hypertension. IEEE Access, 7, 144777-144789. https://doi.org/10.1109/ACCESS.2019.2945129
Fregoso-Aparicio, L. F., Noguez, J., Montesinos, L., & García, J. A. G. (2021). Machine learning and deep learning predictive models for type 2 diabetes: A systematic review. Diabetology & Metabolic Syndrome, 13. https://doi.org/10.1186/s13098-021-00767-9
Galbete, A., Tamayo, I., Librero, J., Enguita-Germán, M., Cambra, K., & Ibáñez-Beroiz, B. (2022). Cardiovascular risk in patients with type 2 diabetes: A systematic review of prediction models. Diabetes Research and Clinical Practice, 184. https://doi.org/10.1016/j.diabres.2021.109089
Gandevani, S. B., Amiri, M., Yarandi, R. B., & Tehrani, F. R. (2019). The impact of diagnostic criteria for gestational diabetes on its prevalence: A systematic review and meta-analysis. Diabetology & Metabolic Syndrome, 11, 1-18. https://doi.org/10.1186/s13098-019-0406-1
Gautier, T., Ziegler, L. B., Gerber, M. S., Campos-Náñez, E., & Patek, S. D. (2021). Artificial intelligence and diabetes technology: A review. Metabolism: Clinical and Experimental, 124. https://doi.org/10.1016/j.metabol.2021.154872
Haghi Kashani, M., Madanipour, M., Nikravan, M., Asghari, P., & Mahdipour, E. (2021). A systematic review of IoT in healthcare: Applications, techniques, and trends. Journal of Network and Computer Applications, 192, 103164. https://doi.org/10.1016/j.jnca.2021.103164
Hong, N., Park, H., & Rhee, Y. (2020). Machine learning applications in endocrinology and metabolism research: An overview. Endocrinology and Metabolism, 35(1), 71-84. https://doi.org/10.3803/EnM.2020.35.1.71
Jaiswal, V., Negi, A., & Pal, T. (2021). A review on current advances in machine learning based diabetes prediction. Primary Care Diabetes, 15(3), 435-443. https://doi.org/10.1016/j.pcd.2021.02.005
Kattini, R., Hummelen, R., & Kelly, L. (2020). Early gestational diabetes mellitus screening with glycated hemoglobin: A systematic review. Journal of Obstetrics and Gynaecology Canada, 42(11), 1379-1384. https://doi.org/10.1016/j.jogc.2019.12.015
Khan, F. A., Zeb, K., Al-Rakhami, M., Derhab, A., & Bukhari, S. A. C. (2021). Detection and prediction of diabetes using data mining: A comprehensive review. IEEE Access, 9, 43711-43735. https://doi.org/10.1109/ACCESS.2021.3059343
Kodama, S., Fujihara, K., Horikawa, C., Kitazawa, M., Iwanaga, M., Kato, K., Watanabe, K., Nakagawa, Y., Matsuzaka, T., Shimano, H., & Sone, H. (2022). Predictive ability of current machine learning algorithms for type 2 diabetes mellitus: A meta-analysis. Journal of Diabetes Investigation, 13(5), 900-908. https://doi.org/10.1111/jdi.13736
Kvitkina, T., Narres, M., Claessen, H., Metzendorf, M. I., Richter, B., & Icks, A. (2020). Incidence of stroke in the diabetic compared with the non-diabetic population: A systematic review protocol. Diabetes/Metabolism Research and Reviews, 36(6). https://doi.org/10.1002/dmrr.3311
Li, K., Daniels, J., Liu, C., Herrero, P., & Georgiou, P. (2020). Convolutional recurrent neural networks for glucose prediction. IEEE Journal of Biomedical and Health Informatics, 24(2), 603-613. https://doi.org/10.1109/JBHI.2019.2908488
Madhava, P. S., & Verma, S. (2019). A systematic literature review for early detection of type ii diabetes. En 2019 5th International Conference on Advanced Computing and Communication Systems (ICACCS) (pp. 220-224). https://doi.org/10.1109/ICACCS.2019.8728377
Magliano, D. J., Islam, R. M., Barr, E. L. M., Gregg, E. W., Pavkov, M. E., Harding, J. L., Tabesh, M., Koye, D. N., & Shaw, J. E. (2019). Trends in incidence of total or type 2 diabetes: Systematic review. BMJ, 366. https://doi.org/10.1136/bmj.l5003
Nuankaew, P., Chaising, S., & Temdee, P. (2021). Average weighted objective distance-based method for type 2 diabetes prediction. IEEE Access, 9, 137015-137028. https://doi.org/10.1109/ACCESS.2021.3117269
Pease, A., Lo, C., Earnest, A., Kiriakova, V., Liew, D., & Zoungas, S. (2019). The efficacy of technology in type 1 diabetes: A systematic review, network meta-analysis, and narrative synthesis. Diabetes Technology & Therapeutics, 22(5), 411-421. https://doi.org/10.1089/dia.2019.0417
Peer, N., Balakrishna, Y., & Durao, S. (2020). Screening for type 2 diabetes mellitus. Cochrane Database of Systematic Reviews, 5. https://doi.org/10.1002/14651858.CD005266.pub2
Ray, A., & Chaudhuri, A. K. (2021). Smart healthcare disease diagnosis and patient management: Innovation, improvement and skill development. Machine Learning with Applications, 3, 100011. https://doi.org/10.1016/j.mlwa.2020.100011
Safaei, M., Sundararajan, E. A., Driss, M., Boulila, W., & Shapi’i, A. (2021). A systematic literature review on obesity: Understanding the causes & consequences of obesity and reviewing various machine learning approaches used to predict obesity. Computers in Biology and Medicine, 136, 104754. https://doi.org/10.1016/j.compbiomed.2021.104754
Santos, D. S., Regina, C., Batistelli, S., & Marilac, M. (2022). The effectiveness of the use of telehealth programs in the care of individuals with hypertension and, or diabetes mellitus: Systematic review and meta-analysis. Diabetology & Metabolic Syndrome, 14, 76. https://doi.org/10.1186/s13098-022-00846-5
Schwartz, J. L., Tseng, E., Maruthur, N. M., & Rouhizadeh, M. (2022). Identification of prediabetes discussions in unstructured clinical documentation: Validation of a natural language processing algorithm. Journal of Medical Internet Research, 10(2). https://doi.org/10.2196/29803
Shahid, A. H., & Singh, M. P. (2019). Computational intelligence techniques for medical diagnosis and prognosis: Problems and current developments. Biocybernetics and Biomedical Engineering, 39(3), 638-672. https://doi.org/10.1016/j.bbe.2019.05.010
Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104, 333-339. https://doi.org/10.1016/j.jbusres.2019.07.039
Tuppad, A., & Patil, S. D. (2022). Machine learning for diabetes clinical decision support: A review. Advances in Computational Intelligence, 2(2), 1-24. https://doi.org/10.1007/s43674-022-00034-y
Vounzoulaki, E., Khunti, K., Abner, S. C., Tan, B. K., Davies, M. J., & Gillies, C. L. (2020). Progression to type 2 diabetes in women with a known history of gestational diabetes: Systematic review and meta-analysis. BMJ, 369, m1361. https://doi.org/10.1136/bmj.m1361
Wang, Q., Cao, W., Guo, J., Ren, J., Cheng, Y., & Davis, D. N. (2019). DMP_MI: An effective diabetes mellitus classification algorithm on imbalanced data with missing values. IEEE Access, 7, 102232-102238. https://doi.org/10.1109/ACCESS.2019.2929866
Wang, Y., Liu, D., Li, X., Liu, Y., & Wu, Y. (2021). Antidepressants use and the risk of type 2 diabetes mellitus: A systematic review and meta-analysis. Journal of Affective Disorders, 287(45), 41-53. https://doi.org/10.1016/j.jad.2021.03.023
Woldaregay, A. Z., Årsand, E., Walderhaug, S., Albers, D., Mamykina, L., Botsis, T., & Hartvigsen, G. (2019). Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes. Artificial Intelligence in Medicine, 98, 109-134. https://doi.org/10.1016/j.artmed.2019.07.007
Xie, J., & Wang, Q. (2020). Benchmarking machine learning algorithms on blood glucose prediction for type i diabetes in comparison with classical time-series models. IEEE Transactions on Biomedical Engineering, 67(11), 101-3124. https://doi.org/10.1109/TBME.2020.2975959
Zaitcev, A., Eissa, M. R., Hui, Z., Good, T., Elliott, J., & Benaissa, M. (2020). A deep neural network application for improved prediction of HbA 1c in type 1 diabetes. IEEE Journal of Biomedical and Health Informatics, 24(10), 2932-2941. https://doi.org/10.1109/JBHI.2020.2967546
Zhang, H., Shao, J., Chen, D., Zou, P., Ciu, N., Tang, L., Wang, D., & Ye, Z. (2020). Reporting and methods in developing prognostic prediction models for metabolic syndrome: A systematic review and critical appraisal. Diabetes, Metabolic Syndrome and Obesity, 13, 4981-4992.
Zhang, Z., Yang, L., Han, W., Wu, Y., Zhang, L., Gao, C., Jiang, K., Liu, Y., & Wu, H. (2022). Machine learning prediction models for gestational diabetes mellitus: Meta-analysis. Journal of Medical Internet Research, 24(3). https://doi.org/10.2196/26634
Zheng, M., Bernardo, C. O., Stocks, N., & Gonzalez-Chica, D. (2022). Diabetes mellitus diagnosis and screening in Australian general practice: A national study. Journal of Diabetes Research. DOI: 10.1155/2022/156640
Zhu, T., Li, K., Herrero, P., & Georgiou, P. (2021). Deep learning for diabetes: A systematic review. IEEE Journal of Biomedical and Health Informatics, 25(7), 2744-2757. https://doi.org/10.1109/JBHI.2020.3040225
Zimmerman, J., Soler, R. E., Lavinder, J., Murphy, S., Atkins, C., Hulbert, L., Lusk, R., & Ng, B. P. (2021). Iterative guided machine learning-assisted systematic literature reviews: A diabetes case study. Systematic Reviews, 10, 97. https://doi.org/10.1186/s13643-021-01640-6
Derechos de autor 2022 Interfases
Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
Los autores/as conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución de Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado (vea The Effect of Open Access).
Última actualización: 03/05/21