Deep Learning algorithms for the detection of pneumonia in infants through chest x-ray images

Authors

  • Juan Carlos Valero Gómez Universidad Nacional de Moquegua, Ilo, Perú
  • Alex Peter Zúñiga Incalla Universidad Nacional de Moquegua, Ilo, Perú
  • Juan Carlos Clares Perca Universidad Nacional de Moquegua, Ilo, Perú

DOI:

https://doi.org/10.26439/ciis2021.5586

Keywords:

neumonía infantil, deep learning, Xception, MobileNet, InceptionV3

Abstract

Worldwide, large numbers of infants die of pneumonia each year. It is reported that approximately more than 1 million cases of pneumonia in infants occur between 0 and 5 years of age, of which 920 136 died in 2015. Therefore, pneumonia is one of the leading causes of death among infants, with a high level of mortality in Asia and Africa. Even in a developed country like the United States, pneumonia is among the top 10 causes of death. Early detection and treatment of pneumonia can significantly reduce mortality rates among infants in emerging countries. Therefore, this work presents deep learning algorithms to detect pneumonia using radiographic images. Three deep learning algorithms were trained to classify X-ray images into two classes: pneumonia and normal. Three algorithms are presented, to each one a 4x4 pooling layer was added, the data is vectorized with the flatten technique, six dense layers of 1024, 512, 256, 128, 64 and 32 of output value were added and each one with relu activation; A BatchNormalization is applied, finally a dense layer of 2 is added with a softmax activation for classification. The three algorithms are previously trained models, which are Xception, MobileNet and InceptionV3 obtained in the accuracy metric 94.4%, 96.2% and 95.3% respectively.

Downloads

Download data is not yet available.

Author Biographies

  • Juan Carlos Valero Gómez , Universidad Nacional de Moquegua, Ilo, Perú

    Ingeniero de Sistemas e Informática de profesión, con estudios en ciencias de datos, visión computacional, administración de sistemas operativos Linux, desarrollo de aplicaciones web tanto en backend y frondend

  • Alex Peter Zúñiga Incalla, Universidad Nacional de Moquegua, Ilo, Perú

    Consultor y especialista en Ingeniería de Sistemas de Información con amplia experiencia en la gestión e implementación en modelamiento de procesos y datos estructurados y alto énfasis en el sector educativo para el servicio del sector público y privado. Actualmente, está especializándose en el rubro del procesamiento de imágenes y videos para ejercer la auditoría forense y peritaje informático. Ejerce la docencia universitaria desde el año 2002 en la Universidad José Carlos Mariátegui y desde el año 2008 en la Universidad Nacional de Moquegua y otras universidades de la Macro Región Sur.

  • Juan Carlos Clares Perca, Universidad Nacional de Moquegua, Ilo, Perú

    Ingeniero en Informática y Sistemas, magíster en Administración de la Educación, actualmente docente en la Universidad Nacional de Moquegua.

References

Chollet, F. (2017). Xception: Deep Learning with Depthwise Separable Convolutions. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1800-1807. https://doi.org/10.1109/CVPR.2017.195

Deng, J., Russakovsky, O., Krause, J., Bernstein, M., Berg, A., y Fei-Fei, L. (2014). Scalable MultiLabel Annotation. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ‘14), 3099-3102. https://doi.org/10.1145/2556288.2557011

Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H., y Aerts, H. J. W. L. (2018). Artificial Intelligence in Radiology. Nature Reviews Cancer, 18(8), 500-510. https://doi.org/10.1038/s41568-018-0016-5

Howard, A., Sandler, M., Chen, B., Wang, W., Chen, L. C., Tan, M., Chu, G., Vasudevan, V., Zhu, Y., Pang, R., Adam, H., y Le, Q. (2019). Searching for MobileNetV3. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 1314-1324. https://doi.org/10.1109/iccv.2019.00140

Kallianos, K., Mongan, J., Antani, S., Henry, T., Taylor, A., Abuya, J., y Kohli, M. (2019). How Far Have We Come? Artificial Intelligence for Chest Radiograph Interpretation. Clinical Radiology, 74(5), 338-345. https://doi.org/10.1016/j.crad.2018.12.015

Kermany, D. S., Goldbaum, M., Cai, W., Valentim, C. C., Liang, H., Baxter, S. L., McKeown, A., Yang, G., Wu, X., Yan, F., Dong, J., Prasadha, M. K., Pei, J., Ting, M., Zhu, J., Li, C., Hewett, S., Dong, J., Ziyar, I., … Zhang, K. (2018). Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell, 172(5), 1122-1131.e9. https://doi.org/10.1016/j.cell.2018.02.010

Liang, G., y Zheng, L. (2020). A Transfer Learning Method with Deep Residual Network for Pediatric Pneumonia Diagnosis. Computer Methods and Programs in Biomedicine, 187. https://doi.org/10.1016/j.cmpb.2019.06.023

Liu, N., Wan, L., Zhang, Y., Zhou, T., Huo, H., y Fang, T. (2018). Exploiting Convolutional Neural Networks with Deeply Local Description for Remote Sensing Image Classification. IEEE Access, 6, 11215-11227. https://doi.org/10.1109/ACCESS.2018.2798799

WHO. (2019). Pneumonia. https://www.who.int/es/news-room/fact-sheets/detail/pneumonia

Song, S., Chaudhuri, K., y Sarwate, A. D. (2013). Stochastic Gradient Descent with Differentially Private Updates. 2013 IEEE Global Conference on Signal and Information Processing, 245-248. https://doi.org/10.1109/GlobalSIP.2013.6736861

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., y Wojna, Z. (2016). Rethinking the Inception Architecture for Computer Vision. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2818-2826. https://doi.org/10.1109/CVPR.2016.308

Downloads

Published

2021-12-22

How to Cite

Deep Learning algorithms for the detection of pneumonia in infants through chest x-ray images . (2021). Actas Del Congreso Internacional De Ingeniería De Sistemas, 183-194. https://doi.org/10.26439/ciis2021.5586