Comparative analysis of machine learning methods to classify opinions about the peruvian restaurant service on Facebook

Authors

  • Martín Jesús Adrianzén Torres Universidad de Lima, Perú
  • Edwin Jhonatan Escobedo Cárdenas Universidad de Lima, Perú

DOI:

https://doi.org/10.26439/ciis2021.5578

Keywords:

sentiment analysis, natural language processin, machine learning, vector support machine, Naive Bayes, Ramdom Forest, restaurant service

Abstract

Customer opinions on social media services are vital for companies because they can improve and enhance business opportunities if the comments can be analyzed in time. The purpose of this work is to determine the best performing machine learning methods to apply sentiment analysis and classify positive and negative comments about the Peruvian restaurant service on Facebook. As the first contribution to this project, two datasets of comments from Peruvian restaurant chain posts on Facebook were created. The second contribution is the proposed methodology divided into two stages: in the first stage, Natural Language techniques were applied for the pre-processing of comments; In the second stage, the performance of the Naive Bayes, Random Forest, and SVM algorithms with RBF and Linear cores was analyzed to classify the opinions in the datasets. The experimental results demonstrated that the SVM classifier obtained the best performance in both the training and testing stages with 91.44% and 94% accuracy for the primary and secondary datasets, respectively, proving the viability of the proposed methodology.

Downloads

Download data is not yet available.

Author Biographies

  • Martín Jesús Adrianzén Torres, Universidad de Lima, Perú

    Estudiante de último ciclo de la Carrera de Ingeniería de Sistemas de la Universidad de Lima con formación en aprendizaje automático/profundo. Conocimientos de los lenguajes de programación en Java y Python e interés y participación en proyectos de investigación de procesamiento de lenguaje natural, ingeniería social y análisis en redes sociales.

  • Edwin Jhonatan Escobedo Cárdenas, Universidad de Lima, Perú

    Doctor en Ciencias de la Computación con una sólida formación en aprendizaje automático/profundo y más de seis años de experiencia en el uso de modelos predictivos y algoritmos de procesamiento de datos. Experto en los lenguajes de programación Matlab y R/Python e involucrado en la investigación de reconocimiento del lenguaje de acción/gesto/signo.

References

He, W., Zha, S., y Li, L. (2016). Social Media Competitive Analysis and Text Mining: A Case Study in the Pizza Industry. International Journal of Information Management, 33(3), 464-472. https://doi.org/10.1016/j.ijinfomgt.2013.01.001

Hossain, F. M. T., Hossain, M. I., y Nawshin, S. (2017). Machine Learning Based Class Level Prediction of Restaurant Reviews. 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), 420-423. https://doi.org/10.1109/R10-HTC.2017.8288989

Ibrahim, N. F., y Wang, X. (2019). A Text Analytics Approach for Online Retailing Service Improvement: Evidence from Twitter. Decision Support Systems, 121, 37-50. https://doi.org/10.1016/j.dss.2019.03.002

Islam, M., Jubayer, F., y Ahmed, S. (2017). A Support Vector Machine Mixed with TFIDF Algorithm to Categorize Bengali Document. 2017 International Conference on Electrical, Computer and Communication Engineering (ECCE), 191-196. https://doi.org/10.1109/ecace.2017.7912904

Khan, A. H., y Zubair, M. (2020). Classification of Multi-Lingual Tweets, into Multi-Class Model Using Naïve Bayes and Semi-Supervised Learning. Multimedia Tools and Applications, 79(43-44), 32749-32767. https://doi.org/10.1007/s11042-020-09512-2

Krishna, A., Akhilesh, V., Aich, A., y Hegde, C. (2019). Sentiment Analysis of Restaurant Reviews Using Machine Learning Techniques. En V. Sridhar, M. Padma y K. Rao (Eds.), Emerging Research in Electronics, Computer Science and Technology (pp. 687-696). Springer. https://doi.org/10.1007/978-981-13-5802-9_60

Madasu, A., y Elango, S. (2020). Efficient Feature Selection Techniques for Sentiment Analysis. Multimedia Tools and Applications, 79(9-10), 6313-6335. https://doi.org/10.1007/s11042-019-08409-z

Poornima, A., y Priya, K. S. (2020). A Comparative Sentiment Analysis of Sentence Embedding Using Machine Learning Techniques. En 2020 6th International Conference on Advanced Computing and Communication Systems, ICACCS, 493-496. https://doi.org/10.1109/ICACCS48705.2020.9074312

Yulianto, M., Girsang, A. S., y Rumagit, R. Y. (2018). Business Intelligence for Social Media Interaction in the Travel Industry in Indonesia. Journal of Intelligence Studies in Business, 8(2), 77-84. https://doi.org/10.37380/JISIB.V8I2.323

Zahoor, K., Bawany, N. Z., y Hamid, S. (2020). Sentiment Analysis and Classification of Restaurant Reviews Using Machine Learning. 2020 21st International Arab Conference on Information Technology (ACIT). https://doi.org/10.1109/ACIT50332.2020.9300098

Downloads

Published

2021-12-22

How to Cite

Comparative analysis of machine learning methods to classify opinions about the peruvian restaurant service on Facebook . (2021). Actas Del Congreso Internacional De Ingeniería De Sistemas, 67-81. https://doi.org/10.26439/ciis2021.5578