Análisis de características en proyectos de big data: revisión sistemática de literatura
Resumen
En el desarrollo de proyectos de big data se identifican diversas problemáticas que pueden deberse a distintos factores, como la baja calidad de los datos utilizados con anomalías que pueden afectar la precisión de los resultados o la falta de claridad en los objetivos comerciales. Esta situación puede provocar errores en el proceso de toma de decisiones, retrasos en las entregas y hasta la cancelación del proyecto. En este contexto, el presente trabajo surge de la necesidad de recopilar investigaciones previas con el fin de conocer la importancia de la aplicación de una metodología de trabajo en proyectos de big data. Se realiza con el objetivo de identificar los enfoques de las metodologías más utilizadas y analizar las características propias de cada una, así como las características comunes o transversales, que permiten la combinación, o adaptación, de distintas metodologías en un mismo proyecto. La generación de grandes volúmenes de datos provenientes de diferentes fuentes y formatos aumenta el desafío de verificar la calidad, ya que pueden presentar anomalías que afecten así la precisión de los resultados obtenidos.
Descargas
Citas
Abdul Hamid, K., Abu Bakar, M., Jalar, A., & Hakim Badarisman, A. (2021). Incorporation of big data in methodology of identifying corrosion factors in the semiconductor package. En 2021 International Conference on Electrical, Communication, and Computer Engineering (ICECCE) (pp. 1-4). https://doi.org/10.1109/ICECCE52056.2021.9514240
Ahmad, Z., Yaacob, S., Ibrahim, R., & Farahwani, W. (2022). The review for visual analytics methodology. En 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (pp. 1-10). Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/HORA55278.2022.9800100
Bahit, E. (2012). Scrum & Extreme Programming (para programadores). Creative Commons.
Caffetti, Y. A., Eckert, K., Ruidías, H. J., & Vera Laceiras, M. S. (2023). Data cleansing en entornos big data: mapeo sistemático de la literatura. En S. Rodríguez, M. Giménez y M. A. Molina (Comps.), XXVIII Congreso Argentino de Ciencias de la Computación – CACIC 2022 (pp. 75-79). Editorial de la Universidad Nacional de La Rioja. https://repositoriosdigitales.mincyt.gob.ar/vufind/Record/SEDICI_1d437c59c0d397280848f3cfd422df97
Dai, H.-N., Wang, H., Xu, G., Wan, J., & Imran, M. (2019). Big data analytics for manufacturing internet of things: opportunities, challenges and enabling technologies. Enterprise Information Systems, 14(9-10), 1279-1303. https://doi.org/10.48550/arXiv.1909.00413
Dastgerdi, A., & Gandomani, T. (2021). On the appropriate methodologies for data science projects. En 2021 International Conference on Information Technology (pp. 667-673). Institute of Electrical and Electronic Engineers. https://doi.org/10.1109/ICIT52682.2021.9491712
Davenport, T. (2006). Competing on Analytics. Harvard Business Review https://hbr.org/2006/01/competing-on-analytics
Funde, S., & Swain, G. (2022). Big data privacy and security using abundant data recovery techniques and data obliviousness methodologies. IEEE Access, 10, 105458-205484. https://doi.org/10.1109/ACCESS.2022.3211304
García-Gil, D., García, S., Xiong, N., & Herrera, F. (2021). Smart data driven decision trees ensemble methodology for imbalanced big data. Cognitive Computation, 16, 1572-1588. https://doi.org/10.48550/arXiv.2001.05759
Jin, W., Yang, J., & Fang, Y. (2020). Application methodology of big data for emergency management. En 2020 IEEE 11th International Conference on Software Engineering and Service Science (ICSESS) (pp. 326-330). Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/ICSESS49938.2020.9237653
Kavakli, E., Sakellariou, R., Eleftheriou, I., & Mascolo, J. (2020). Towards a multiperspective methodology for big data requirements. En 2020 IEEE International Conference on Big Data (pp. 5719-5720). Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/BigData50022.2020.9378406
Khan, N., Alsaqer, M., Shah, H., Badsha, G., Abbasi, A., & Salehian, S. (2018). The 10 Vs, Issues and Challenges of Big Data. En ICBDE ’18 (pp. 52-56). Association for Computing Machinery. https://doi.org/10.1145/3206157.3206166
Kitchenham, B., & Charters, S. (2007). Guidelines for performing Systematic Literature Reviews in Software Engineering. Keele University; Durham University Joint Report.
Krasteva, I., & Ilieva, S. (2021). Adopting agile software development methodologies in big data projects – a systematic literature review of experience reports. En 2020 IEEE International Conference on Big Data (pp. 2028-2033). Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/BigData50022.2020.9378118
Manzano, F., & Avalos, D. (2023). Análisis de calidad de los datos en las estadísticas públicas y privadas, ante la implementación del Big Data. Ciencias Administrativas, 11(22), 1-11. https://doi.org/10.24215/23143738e119
Markopoulos, D., Tsolakidis, A., Karanikolas, N., Marinagi, A., & Skourlas, C. (2024). Applying soft system methodology for a clearer understanding of the future intensive care units. En PCI ‘23: Proceedings of the 27th Pan-Hellenic Conference on Progress in Computing and Informatics (pp. 163-170). Association for Computing Machinery. https://doi.org/10.1145/3635059.3635084
Ontiveros, E. (Dir.), Sabater, V. (Coord.)., Vizcaíno, D., Romero, M., & Llorente, A. (2018). Economía de los datos. Riqueza 4.0. Fundación Telefónica, Ariel España.
Project Management Institute. (2017). A guide to the project management knowledge. PMBOK Guide (6.ª ed).
Reggio, G., & Astesiano, E. (2020). Big-Data/Analytics projects failure: A literature review. En 2020 46th Euromicro Conference on Software Engineering and Advanced Applications (pp. 246-255). https://doi.org/10.1109/SEAA51224.2020.00050
Saltz, J., & Hotz, N. (2020). Identifying the most common frameworks data science teams use to structure and coordinate their projects. En 2020 IEEE International Conference on Big Data (pp. 2038-2042). Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/BigData50022.2020.9377813
Shu, W., Sun, W., & Li, Y. (2020). The development trend of design methodology under the influence of artificial intelligence and big data. En ICDLT ‘20: Proceedings of the 2020 4th International Conference on Deep Learning Technologies (pp. 104-108). Association for Computing Machinery. https://doi.org/10.1145/3417188.3417214
Song, X., Zhang, H., Akerkar, R., Huang, H., Guo, S., Zhong, L., Ji, Y., Opdahl, A. L., Purohit, H., Skupin, A., Pottathil, A., & Culotta, A. (2020). Big data and emergency management: concepts, methodologies, and applications. IEEE Transactions on Big Data, 8(2), 397-419. https://doi.org/10.1109/TBDATA.2020.2972871
Tardío, R., Maté, A., & Trujillo, J. (2020). An iterative methodology for defining big data analytics architectures. IEEE Access, 8, 210597-210616. https://doi.org/10.1109/ACCESS.2020.3039455
Zúñiga, F., Mora Poveda, D., & Llerena Llerena, W. (2023). El Big Data y su implicación en el marketing. Revista de Comunicación de la SEECI, 56, 302-321. https://doi.org/10.15198/seeci.2023.56.e832
Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
Los autores/as conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución de Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado (vea The Effect of Open Access).
Última actualización: 03/05/21